@article{ApriyantoCompartFettke2023, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield}, series = {Frontiers in plant science}, volume = {14}, journal = {Frontiers in plant science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2023.1220237}, pages = {13}, year = {2023}, abstract = {The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.}, language = {en} } @article{CompartSinghFettkeetal.2023, author = {Compart, Julia and Singh, Aakanksha and Fettke, J{\"o}rg and Apriyanto, Ardha}, title = {Customizing starch properties}, series = {Polymers}, volume = {15}, journal = {Polymers}, number = {16}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym15163491}, pages = {20}, year = {2023}, abstract = {Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.}, language = {en} } @misc{ApriyantoCompartFettke2022, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {A review of starch, a unique biopolymer - structure, metabolism and in planta modifications}, series = {Plant science : an international journal of experimental plant biology}, volume = {318}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2022.111223}, pages = {8}, year = {2022}, abstract = {Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have alpha-1,4-and alpha-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.}, language = {en} } @article{ApriyantoCompartZimmermannetal.2022, author = {Apriyanto, Ardha and Compart, Julia and Zimmermann, Vincent and Alseekh, Saleh and Fernie, Alisdair and Fettke, J{\"o}rg}, title = {Indication that starch and sucrose are biomarkers for oil yield in oil palm (Elaeis guineensis Jacq.)}, series = {Food chemistry}, volume = {393}, journal = {Food chemistry}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2022.133361}, pages = {11}, year = {2022}, abstract = {Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique characteristics. Metabolomics analysis was able to distinguish accumulation patterns defining of the various developmental stages and oil yield. Interestingly, high- and medium-yielding oil palms exhibited substantially increased sucrose levels compared to low-yielding palms. In addition, parameters such as starch granule morphology, granule size, total starch content, and starch chain length distribution (CLD) differed significantly among the oil yield categories with a clear correlation between oil yield and various starch parameters. These results provide new insights into carbohydrate and starch metabolism for biosynthesis of oil palm fruits, indicating that starch and sucrose can be used as novel, easy-to-analyze, and reliable biomarker for oil yield.}, language = {en} } @article{SinghCompartALRawietal.2022, author = {Singh, Aakanksha and Compart, Julia and AL-Rawi, Shadha Abduljaleel and Mahto, Harendra and Ahmad, Abubakar Musa and Fettke, J{\"o}rg}, title = {LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.15855}, pages = {819 -- 835}, year = {2022}, abstract = {For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38\% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.}, language = {en} } @article{LiApriyantoFloresCastellanosetal.2022, author = {Li, Xiaoping and Apriyanto, Ardha and Flores Castellanos, Junio and Compart, Julia and Muntaha, Sidratul Nur and Fettke, J{\"o}rg}, title = {Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling}, series = {Frontiers in Plant Science}, journal = {Frontiers in Plant Science}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-462X}, doi = {10.3389/fpls.2022.1039534}, pages = {1 -- 16}, year = {2022}, abstract = {An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.}, language = {en} } @article{MuntahaLiCompartetal.2022, author = {Muntaha, Sidratul Nur and Li, Xiaoping and Compart, Julia and Apriyanto, Ardha and Fettke, J{\"o}rg}, title = {Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {180}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2022.03.033}, pages = {35 -- 41}, year = {2022}, abstract = {The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.}, language = {en} } @article{MeridaFettke2021, author = {Merida, Angel and Fettke, J{\"o}rg}, title = {Starch granule initiation in Arabidopsis thaliana chloroplasts}, series = {The plant journal}, volume = {107}, journal = {The plant journal}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.15359}, pages = {688 -- 697}, year = {2021}, abstract = {The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.}, language = {en} } @article{LiuLiFettke2021, author = {Liu, Qingting and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {11}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22115666}, pages = {11}, year = {2021}, abstract = {Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells.}, language = {en} } @article{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, edition = {19}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules26195859}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} } @article{CompartLiFettke2021, author = {Compart, Julia and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch-A complex and undeciphered biopolymer}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {258}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {0176-1617}, doi = {10.1016/j.jplph.2021.153389}, pages = {258 -- 259}, year = {2021}, abstract = {Starch is a natural storage carbohydrate in plants and algae. It consists of two relatively simple homo-biopolymers, amylopectin and amylose, with only alpha-1,4 and alpha-1,6 linked glucosyl units. Starch is an essential source of nutrition and animal food, as well as an important raw material for industry. However, despite increasing knowledge, detailed information about its structure and turnover are largely lacking. In the last decades, most data were generated using bulk experiments, a method which obviously presents limitations regarding a deeper understanding of the starch metabolism. Here, we discuss some unavoidable questions arising from the existing data. We focus on a few examples related to starch biosynthesis, degradation, and structure where these limitations strongly emerge. Closing these knowledge gaps will also be extremely important for taking the necessary steps in order to set up starch-providing crops for the challenges of the ongoing climate changes, as well as for increasing the usability of starches for industrial applications by biotechnology.}, language = {en} } @article{OrzechowskiSitnickaGrabowskaetal.2021, author = {Orzechowski, Slawomir and Sitnicka, Dorota and Grabowska, Agnieszka and Compart, Julia and Fettke, J{\"o}rg and Zdunek-Zastocka, Edyta}, title = {Effect of short-term cold treatment on carbohydrate metabolism in potato leaves}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22137203}, pages = {17}, year = {2021}, abstract = {Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 degrees C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the alpha-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars.}, language = {en} } @article{BrustOrzechowskiFettke2020, author = {Brust, Henrike and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch and Glycogen Analyses}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10071020}, pages = {24}, year = {2020}, abstract = {For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included}, language = {en} } @article{StaszekKrasuskaOtulakKozieletal.2019, author = {Staszek, Pawel and Krasuska, Urszula and Otulak-Koziel, Katarzyna and Fettke, J{\"o}rg and Gniazdowska, Agnieszka}, title = {Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01077}, pages = {18}, year = {2019}, abstract = {Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 mu M) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-mu M CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-mu M CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-mu M CAN, while 10-mu M CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.}, language = {en} } @article{MediniFarhatAlRawietal.2019, author = {Medini, Wided and Farhat, Nejia and Al-Rawi, Shadha and Mahto, Harendra and Qasim, Hadeel and Ben-Halima, Emna and Bessrour, Mouna and Chibani, Farhat and Abdelly, Chedly and Fettke, J{\"o}rg and Rabhi, Mokded}, title = {Do carbohydrate metabolism and partitioning contribute to the higher salt tolerance of Hordeum marinum compared to Hordeum vulgare?}, series = {Acta Physiologiae Plantarum}, volume = {41}, journal = {Acta Physiologiae Plantarum}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {0137-5881}, doi = {10.1007/s11738-019-2983-x}, pages = {12}, year = {2019}, abstract = {The aim of the present work was to check whether carbohydrate metabolism and partitioning contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum compared to the glycophyte Hordeum vulgare. Seedlings with the same size from the two species were hydroponically grown at 0 (control), 150, and 300 mM NaCl for 3 weeks. H. marinum maintained higher relative growth rate, which was concomitant with a higher aptitude to maintain better shoot tissue hydration and membrane integrity under saline conditions compared to H. vulgare. Gas exchanges were reduced in the two species under saline conditions, but an increase in their water use efficiency was recorded. H. marinum exhibited an increase in leaf soluble sugar concentrations under saline conditions together with an enhancement in the transglucosidase DPE2 (EC 2.4.1.25) activity at 300 mM NaCl. However, H. vulgare showed a high increase in starch phosphorylase (EC 2.4.1.1) activity under saline conditions together with a decrease in leaf glucose and starch concentrations at 300 mM NaCl. In roots, both species accumulated glucose and fructose at 150 mM NaCl, but H. marinum exhibited a marked decrease in soluble sugar concentrations and an increase in starch concentration at 300 mM NaCl. Our data constitute an initiation to the involvement of carbohydrate metabolism and partitioning in salt responses of barley species and further work is necessary to elucidate how their flexibility confers higher tolerance to H. marinum compared to H. vulgare.}, language = {en} } @article{MalinovaKoesslerOrawetzetal.2019, author = {Malinova, Irina and K{\"o}ssler, Stella and Orawetz, Tom and Matthes, Ulrike and Orzechowski, Slawomir and Koch, Anke and Fettke, J{\"o}rg}, title = {Identification of two Arabidopsis thaliana plasma membrane transporters able to transport glucose 1-phosphate}, series = {Plant \& cell physiology}, volume = {61}, journal = {Plant \& cell physiology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1093/pcp/pcz206}, pages = {381 -- 392}, year = {2019}, abstract = {Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.}, language = {en} } @article{GoetzNaherFettkeetal.2018, author = {G{\"o}tz, Klaus-Peter and Naher, Jobadatun and Fettke, J{\"o}rg and Chmielewski, Frank M.}, title = {Changes of proteins during dormancy and bud development of sweet cherry (Prunus avium L.)}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {239}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2018.05.016}, pages = {41 -- 49}, year = {2018}, abstract = {Trees control the flowering processes in response to both environmental and endogenous (mechanisms at cellular/tissue level) conditions. Dormancy of flower buds is characterized by the reduction of growth and the enhancement of frost and desiccation resistance. The release of endodormancy and the beginning of ontogenetic development, as two important dates for developing reliable phenological models, escape from any visible signs. Thus, we identified - to our knowledge as first - relevant proteins in sweet cherry buds occurring during these phenological phases at high time resolution in three seasons (2012/13-2014/15) under natural conditions in Northeast Germany. The protein content of buds from the first week of October to leaf fall, from leaf fall to the end of endodormancy (t1), from t1 to the beginning of ontogenetic development (t1*), and from t1* until swollen bud, was comparable in each of the seasons. The increase of the protein content began after swollen bud and markedly differences occurred at side green, green tip, tight and open cluster. SDS gel electrophoresis followed by peptide mass fingerprinting accomplished by MALDI-TOF MS was applied for protein identification. 'Volume intensity' has been used to demonstrate the pattern and changes of proteins. None of the analysed proteins like for cell proliferation/differentiation (Phytosulfokines 3), carbon fixation (Rubisco), and defense against pathogenes (Major allergen Pru sv 1) indicates the date of endodormancy release or the beginning of the (invisible) ontogenetic development. The stages around green tip, tight, and open cluster resulted in markedly increase of the volume intensity of the protein for cell proliferation/differentiation and the carbon fixation, whereas the volume intensity of a protein for defense against pathogens markedly decreased. The pattern and changes of the volume intensity of neoxanthin synthase (NXS) in sweet cherry buds followed the increasing demand during endo- and ecodormancy to produce neoxanthin, which is a prominent member of the group of reactive oxygen species (ROS) scavengers.}, language = {en} } @article{MalinovaMahtoBrandtetal.2018, author = {Malinova, Irina and Mahto, Harendra and Brandt, Felix and AL-Rawi, Shadha and Qasim, Hadeel and Brust, Henrike and Hejazi, Mahdi and Fettke, J{\"o}rg}, title = {EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13937}, pages = {126 -- 137}, year = {2018}, abstract = {Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.}, language = {en} } @article{MalinovaQasimBrustetal.2018, author = {Malinova, Irina and Qasim, Hadeel M. and Brust, Henrike and Fettke, J{\"o}rg}, title = {Parameters of Starch Granule Genesis in Chloroplasts of Arabidopsis thaliana}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00761}, pages = {1 -- 7}, year = {2018}, abstract = {Starch is the primary storage carbohydrate in most photosynthetic organisms and allows the accumulation of carbon and energy in form of an insoluble and semi-crystalline particle. In the last decades large progress, especially in the model plant Arabidopsis thaliana, was made in understanding the structure and metabolism of starch and its conjunction. The process underlying the initiation of starch granules remains obscure, although this is a fundamental process and seems to be strongly regulated, as in Arabidopsis leaves the starch granule number per chloroplast is fixed with 5-7. Several single, double, and triple mutants were reported in the last years that showed massively alterations in the starch granule number per chloroplast and allowed further insights in this important process. This mini review provides an overview of the current knowledge of processes involved in the initiation and formation of starch granules. We discuss the central role of starch synthase 4 and further proteins for starch genesis and affecting metabolic factors.}, language = {en} } @article{GietlerNykielOrzechowskietal.2017, author = {Gietler, Marta and Nykiel, Malgorzata and Orzechowski, Slawomir and Fettke, J{\"o}rg and Zagdanska, Barbara}, title = {Protein carbonylation linked to wheat seedling tolerance to water deficiency}, series = {Environmental and experimental botany}, volume = {137}, journal = {Environmental and experimental botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.02.004}, pages = {84 -- 95}, year = {2017}, abstract = {The appearance of the first leaf from the coleoptile in wheat seedlings (Triticum aestivum L.) coincides with the development of seedling susceptibility to water deficiency on the fifth day following imbibition. In dehydrated wheat seedlings, an increase in the protein carbonyl group has been observed. The coincidence of higher protein carbonylation levels with development of dehydration intolerance drew our attention. To gain more insight into the molecular basis of wheat drought tolerance, the seedling profiles of carbonylated proteins were analysed and compared. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MALDI-TOF and LC-MS/MS) were used to indicate and identify differential carbonylated proteins. Among the protein spots with at least a two-fold change in protein abundance in dehydrated seedlings in relation to control (well-watered) plants during the tolerant phase of growth, 19 carbonylated proteins increased and 18 carbonylated proteins decreased in abundance. Among 26 differentially expressed carbonylated proteins in sensitive seedlings, the abundance of 10 protein spots increased while that of 16 proteins decreased upon dehydration. We have demonstrated a link between protein carbonylation and seedling sensitivity to dehydration. The analysis of carbonylated protein profiles clearly showed that proteins with a potential role in the maintenance of dehydration tolerance in wheat seedlings are mainly linked to energy production, anti-fungal and/or insecticidal activity, or to the regulation of both protein synthesis and degradation.}, language = {en} }