@article{SchenkFettkeLenzetal.2012, author = {Schenk, J{\"o}rg A. and Fettke, J{\"o}rg and Lenz, Christine and Albers, Katharina and Mallwitz, Frank and Gajovic-Eichelmann, Nenad and Ehrentreich-F{\"o}rster, Eva and Kusch, Emely and Sellrie, Frank}, title = {Secretory leukocyte protease inhibitor (SLPI) might contaminate murine monoclonal antibodies after purification on protein G}, series = {Journal of biotechnology}, volume = {158}, journal = {Journal of biotechnology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2011.12.025}, pages = {34 -- 35}, year = {2012}, abstract = {The large scale production of a monoclonal anti-progesterone antibody in serum free medium followed by affinity chromatography on protein G lead to a contamination of the antibody sample with a protein of about 14 kDa. This protein was identified by mass spectrometry as secretory leukocyte protease inhibitor (SLPI). This SLPI contamination lead to a failure of the fiber-optic based competitive fluorescence assay to detect progesterone in milk. Purification of the monoclonal antibody using protein A columns circumvented this problem.}, language = {en} } @article{GoetzNaherFettkeetal.2018, author = {G{\"o}tz, Klaus-Peter and Naher, Jobadatun and Fettke, J{\"o}rg and Chmielewski, Frank M.}, title = {Changes of proteins during dormancy and bud development of sweet cherry (Prunus avium L.)}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {239}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2018.05.016}, pages = {41 -- 49}, year = {2018}, abstract = {Trees control the flowering processes in response to both environmental and endogenous (mechanisms at cellular/tissue level) conditions. Dormancy of flower buds is characterized by the reduction of growth and the enhancement of frost and desiccation resistance. The release of endodormancy and the beginning of ontogenetic development, as two important dates for developing reliable phenological models, escape from any visible signs. Thus, we identified - to our knowledge as first - relevant proteins in sweet cherry buds occurring during these phenological phases at high time resolution in three seasons (2012/13-2014/15) under natural conditions in Northeast Germany. The protein content of buds from the first week of October to leaf fall, from leaf fall to the end of endodormancy (t1), from t1 to the beginning of ontogenetic development (t1*), and from t1* until swollen bud, was comparable in each of the seasons. The increase of the protein content began after swollen bud and markedly differences occurred at side green, green tip, tight and open cluster. SDS gel electrophoresis followed by peptide mass fingerprinting accomplished by MALDI-TOF MS was applied for protein identification. 'Volume intensity' has been used to demonstrate the pattern and changes of proteins. None of the analysed proteins like for cell proliferation/differentiation (Phytosulfokines 3), carbon fixation (Rubisco), and defense against pathogenes (Major allergen Pru sv 1) indicates the date of endodormancy release or the beginning of the (invisible) ontogenetic development. The stages around green tip, tight, and open cluster resulted in markedly increase of the volume intensity of the protein for cell proliferation/differentiation and the carbon fixation, whereas the volume intensity of a protein for defense against pathogens markedly decreased. The pattern and changes of the volume intensity of neoxanthin synthase (NXS) in sweet cherry buds followed the increasing demand during endo- and ecodormancy to produce neoxanthin, which is a prominent member of the group of reactive oxygen species (ROS) scavengers.}, language = {en} } @article{BrustOrzechowskiFettke2020, author = {Brust, Henrike and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch and Glycogen Analyses}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10071020}, pages = {24}, year = {2020}, abstract = {For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included}, language = {en} } @article{StaszekKrasuskaOtulakKozieletal.2019, author = {Staszek, Pawel and Krasuska, Urszula and Otulak-Koziel, Katarzyna and Fettke, J{\"o}rg and Gniazdowska, Agnieszka}, title = {Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01077}, pages = {18}, year = {2019}, abstract = {Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 mu M) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-mu M CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-mu M CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-mu M CAN, while 10-mu M CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.}, language = {en} } @phdthesis{Fettke2006, author = {Fettke, J{\"o}rg}, title = {St{\"a}rkerelevante cytosolische Heteroglykane: Identifizierung und funftionelle Analyse}, address = {Potsdam}, pages = {131 S. : graph. Darst.}, year = {2006}, language = {de} } @article{GietlerNykielOrzechowskietal.2017, author = {Gietler, Marta and Nykiel, Malgorzata and Orzechowski, Slawomir and Fettke, J{\"o}rg and Zagdanska, Barbara}, title = {Protein carbonylation linked to wheat seedling tolerance to water deficiency}, series = {Environmental and experimental botany}, volume = {137}, journal = {Environmental and experimental botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.02.004}, pages = {84 -- 95}, year = {2017}, abstract = {The appearance of the first leaf from the coleoptile in wheat seedlings (Triticum aestivum L.) coincides with the development of seedling susceptibility to water deficiency on the fifth day following imbibition. In dehydrated wheat seedlings, an increase in the protein carbonyl group has been observed. The coincidence of higher protein carbonylation levels with development of dehydration intolerance drew our attention. To gain more insight into the molecular basis of wheat drought tolerance, the seedling profiles of carbonylated proteins were analysed and compared. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MALDI-TOF and LC-MS/MS) were used to indicate and identify differential carbonylated proteins. Among the protein spots with at least a two-fold change in protein abundance in dehydrated seedlings in relation to control (well-watered) plants during the tolerant phase of growth, 19 carbonylated proteins increased and 18 carbonylated proteins decreased in abundance. Among 26 differentially expressed carbonylated proteins in sensitive seedlings, the abundance of 10 protein spots increased while that of 16 proteins decreased upon dehydration. We have demonstrated a link between protein carbonylation and seedling sensitivity to dehydration. The analysis of carbonylated protein profiles clearly showed that proteins with a potential role in the maintenance of dehydration tolerance in wheat seedlings are mainly linked to energy production, anti-fungal and/or insecticidal activity, or to the regulation of both protein synthesis and degradation.}, language = {en} } @article{FettkeEckermannTiessenetal.2005, author = {Fettke, J{\"o}rg and Eckermann, Nora and Tiessen, Axel and Geigenberger, Peter Ludwig and Steup, Martin}, title = {Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L. : distinct SHG reside in the cytosol and in the apoplast}, issn = {0960-7412}, year = {2005}, abstract = {Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (< 10 kDa; SHG(S)) and high (> 10 kDa; SHG(L)) molecular weight compounds. SHG(S) was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG(L) was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG(S) exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG(S) and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using (CO2)-C-14 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime}, language = {en} } @article{EckermannFettkeSteup2002, author = {Eckermann, Nora and Fettke, J{\"o}rg and Steup, Martin}, title = {Identification of polysaccharide binding proteins by affinity electrophoresis in inhomogeneous polyacrylamide gels and subsequent SDS-PAGE/MALDI-TOF analysis}, year = {2002}, language = {en} } @article{MartinsHejaziFettkeetal.2013, author = {Martins, Marina Camara Mattos and Hejazi, Mahdi and Fettke, J{\"o}rg and Steup, Martin and Feil, Regina and Krause, Ursula and Arrivault, Stephanie and Vosloh, Daniel and Figueroa, Carlos Maria and Ivakov, Alexander and Yadav, Umesh Prasad and Piques, Maria and Metzner, Daniela and Stitt, Mark and Lunn, John Edward}, title = {Feedback inhibition of starch degradation in arabidopsis leaves mediated by trehalose 6-phosphate}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {163}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.113.226787}, pages = {1142 -- 1163}, year = {2013}, abstract = {Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by beta-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 mu M in the cytosol, 0.2 to 0.5 mu M in the chloroplasts, and 0.05 mu M in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night.}, language = {en} } @article{HejaziFettkeKoettingetal.2010, author = {Hejazi, Mahdi and Fettke, J{\"o}rg and Koetting, Oliver and Zeeman, Samuel C. and Steup, Martin}, title = {The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6-and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans}, issn = {0032-0889}, doi = {10.1104/pp.109.149914}, year = {2010}, abstract = {The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4- mediated dephosphorylation of the insoluble substrates was incomplete and at least 50\% of the phosphate esters were retained in the pelletable (phospho) glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of alpha-glucans from the insoluble to the soluble state.}, language = {en} } @article{FettkeAlbrechtHejazietal.2010, author = {Fettke, J{\"o}rg and Albrecht, Tanja and Hejazi, Mahdi and Mahlow, Sebastian and Nakamura, Yasunori and Steup, Martin}, title = {Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2009.03126.x}, year = {2010}, abstract = {Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [C-14] glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.}, language = {en} } @article{FettkeLeifelsBrustetal.2012, author = {Fettke, J{\"o}rg and Leifels, Lydia and Brust, Henrike and Herbst, Karoline and Steup, Martin}, title = {Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature}, series = {Journal of experimental botany}, volume = {63}, journal = {Journal of experimental botany}, number = {8}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/ers014}, pages = {3011 -- 3029}, year = {2012}, abstract = {Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-C-14]glucose 1-phosphate, [U-C-14]sucrose, [U-C-14]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-C-14]sucrose plus unlabelled equimolar glucose 1-phosphate. C-14-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced C-14 incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 degrees C but the flux of the sucrose-dependent route strongly increases above 20 degrees C. Results are confirmed by in vitro experiments using [U-C-14]glucose 1-phosphate or adenosine-[U-C-14]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C-14-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.}, language = {en} } @article{MalinovaSteupFettke2011, author = {Malinova, Irina and Steup, Martin and Fettke, J{\"o}rg}, title = {Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {168}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, number = {12}, publisher = {Elsevier}, address = {Jena}, issn = {0176-1617}, doi = {10.1016/j.jplph.2010.12.008}, pages = {1406 -- 1414}, year = {2011}, abstract = {Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases. DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were analysed.}, language = {en} } @article{FettkeMalinovaAlbrechtetal.2011, author = {Fettke, J{\"o}rg and Malinova, Irina and Albrecht, Tanja and Hejazi, Mahdi and Steup, Martin}, title = {Glucose-1-Phosphate transport into protoplasts and chloroplasts from leaves of arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {155}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.110.168716}, pages = {1723 -- 1734}, year = {2011}, abstract = {Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-C-14]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less C-14 into starch when unlabeled bicarbonate is supplied in addition to the C-14-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-C-14] Glc-1-P incorporate C-14 into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate C-14 derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.}, language = {en} } @article{FettkeEckermannPoesteetal.2004, author = {Fettke, J{\"o}rg and Eckermann, Nora and Poeste, Simon and Steup, Martin}, title = {The glycan substrate of the cytosolic (Pho 2) phosphorylase isozyme from Pisum sativum L. : identification, linkage analysis and subcellular localization}, issn = {0960-7412}, year = {2004}, abstract = {The subcellular distribution of starch-related enzymes and the phenotype of Arabidopsis mutants defective in starch degradation suggest that the plastidial starch turnover is linked to a cytosolic glycan metabolism. In this communication, a soluble heteroglycan (SHG) from leaves of Pisum sativum L. has been studied. Major constituents of the SHG are galactose, arabinose and glucose. For subcellular location, the SHG was prepared from isolated protoplasts and chloroplasts. On a chlorophyll basis, protoplasts and chloroplasts yielded approximately 70\% and less than 5\%, respectively, of the amount of the leaf-derived SHG preparation. Thus, most of SHG resides inside the cell but outside the chloroplast. SHG is soluble and not membrane-associated. Using membrane filtration, the SHG was separated into a <10 kDa and a >10 kDa fraction. The latter was resolved into two subfractions (I and II) by field-flow fractionation. In the protoplast-derived >10 kDa SHG preparation the subfraction I was by far the most dominant compound. beta-Glucosyl Yariv reagent was reactive with subfraction II, but not with subfraction I. In in vitro assays the latter acted as glucosyl acceptor for the cytosolic (Pho 2) phosphorylase but not for rabbit muscle phosphorylase. Glycosidic linkage analyses of subfractions I and II and of the Yariv reagent reactive glycans revealed that all three glycans contain a high percentage of arabinogalactan-like linkages. However, SHG possesses a higher content of minor compounds, namely glucosyl, mannosyl, rhamnosyl and fucosyl residues. Based on glycosyl residues and glycosidic linkages, subfraction I possesses a more complex structure than subfraction II}, language = {en} } @article{FettkePoesteEckermannetal.2005, author = {Fettke, J{\"o}rg and Poeste, Simon and Eckermann, Nora and Tiessen, Axel and Pauly, Markus and Geigenberger, Peter Ludwig and Steup, Martin}, title = {Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or overexpress the Pho 2 phosphorylase isozyme}, year = {2005}, abstract = {During starch degradation, chloroplasts export neutral sugars into the cytosol where they appear to enter a complex glycan metabolism. Interactions between glycans and glucosyl transferases residing in the cytosol were studied by analyzing transgenic potato (Solanum tuberosum L.) plants that possess either decreased or elevated levels of the cytosolic (Pho 2) phosphorylase isoform. Water-soluble heteroglycans (SHGs) were isolated from these plants and were characterized. SHG contains, as major constituents, arabinose, rhamnose, galactose and glucose. Non-aqueous fractionation combined with other separation techniques revealed a distinct pool of the SHG that is located in the cytosol. Under in vitro conditions, the cytosolic heteroglycans act as glucosyl acceptor selectively for Pho 2. Acceptor sites were characterized by a specific hydrolytic degradation following the Pho 2-catalyzed glucosyl transfer. The size distribution of the cytosolic SHG increased during the dark period, indicating a distinct metabolic activity related to net starch degradation. Antisense inhibition of Pho 2 resulted in increased glucosyl and rhamnosyl contents of the glycans. Overexpression of Pho 2 decreased the content of both residues. Compared with the wild type, in both types of transgenic plants the size of the cytosolic glycans was increased}, language = {en} } @article{EckermannFettkePaulyetal.2004, author = {Eckermann, Nora and Fettke, J{\"o}rg and Pauly, Markus and Bazant, Esther and Steup, Martin}, title = {Starch-metabolism related isozymes in higher plants}, year = {2004}, language = {en} } @article{FettkeHejaziSmirnovaetal.2009, author = {Fettke, J{\"o}rg and Hejazi, Mahdi and Smirnova, Julia and Hoechel, Erik and Stage, Marion and Steup, Martin}, title = {Eukaryotic starch degradation : integration of plastidial and cytosolic pathways}, issn = {0022-0957}, doi = {10.1093/Jxb/Erp054}, year = {2009}, abstract = {Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.}, language = {en} } @article{HejaziFettkeParisetal.2009, author = {Hejazi, Mahdi and Fettke, J{\"o}rg and Paris, Oskar and Steup, Martin}, title = {The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the a- and b-type allomorphs of crystallized maltodextrins but the mode of action differs}, issn = {0032-0889}, doi = {10.1104/pp.109.138750}, year = {2009}, abstract = {In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of mono-phosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases.}, language = {en} } @article{FettkeMalinovaEckermannetal.2009, author = {Fettke, J{\"o}rg and Malinova, Irina and Eckermann, Nora and Steup, Martin}, title = {Cytosolic heteroglycans in photoautotrophic and in heterotrophic plant cells}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2009.03.016}, year = {2009}, abstract = {In plants several 'starch-related' enzymes exist as plastid- and cytosol-specific isoforms and in some cases the extraplastidial isoforms represent the majority of the enzyme activity. Due to the compartmentation of the plant cells, these extraplastidial isozymes have no access to the plastidial starch granules and, therefore, their in vivo function remained enigmatic. Recently, cytosolic heteroglycans have been identified that possess a complex pattern of the monomer composition and glycosidic bonds. The glycans act both as acceptors and donors for cytosolic glucosyl transferases. In autotrophic tissues the heteroglycans are essential for the nocturnal starch-sucrose conversion. In this review we summarize the current knowledge of these glycans, their interaction with glucosyl transferases and their possible cellular functions. We include data on the heteroglycans in heterotrophic plant tissues and discuss their role in intracellular carbon fluxes that originate from externally supplied carbohydrates.}, language = {en} }