@article{GuoNiFuetal.2022, author = {Guo, Yingjie and Ni, Binbin and Fu, Song and Wang, Dedong and Shprits, Yuri Y. and Zhelavskaya, Irina and Feng, Minghang and Guo, Deyu}, title = {Identification of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using feature selection techniques}, series = {Journal of geophysical research : A, Space physics}, volume = {127}, journal = {Journal of geophysical research : A, Space physics}, number = {1}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9380}, doi = {10.1029/2021JA029926}, pages = {14}, year = {2022}, abstract = {Using over-5-year EMFISIS wave measurements from Van Allen Probes, we present a detailed survey to identify the controlling factors among the geomagnetic indices and solar wind parameters for the 1-min root mean square amplitudes of lower band chorus (LBC) and upper band chorus (UBC). A set of important features are automatically determined by feature selection techniques, namely, Random Forest and Maximum Relevancy Minimum Redundancy. Our analysis results indicate the AE index with zero-time-delay dominates the intensity evolution of LBC and UBC, consistent with the evidence that chorus waves prefer to occur and amplify during enhanced substorm periods. Regarding solar wind parameters, solar wind speed and IMF B-z are identified as the controlling factors for chorus wave intensity. Using the combination of all these important features, a predictive neural network model of chorus wave intensity is established to reconstruct the temporal variations of chorus wave intensity, for which application of Random Forest produces the overall best performance. Plain Language Summary Whistler mode chorus waves are electromagnetic waves observed in the low-density region near the geomagnetic equator outside the plasmapause. The dynamics of Earth's radiation belts are largely influenced by chorus waves owing to their dual contributions to both radiation belt electron acceleration and loss. In this study, we use feature selection techniques to identify the controlling geomagnetic and solar wind factors for magnetospheric chorus waves. Feature selection techniques implement the processes which can select the features most influential to the output. In this study, the inputs are geomagnetic indices and solar wind parameters and the output is the chorus wave intensity. The results indicate that AE index with zerotime delay dominates the chorus wave intensity. Furthermore, solar wind speed and IMF B-z are identified as the most important solar wind drivers for chorus wave intensity. On basis of the combination of all these important geomagnetic and solar wind controlling factors, we develop a neural network model of chorus wave intensity, and find that the model with the inputs identified using the Random Forest method produces the overall best performance.}, language = {en} } @phdthesis{Zhelavskaya2020, author = {Zhelavskaya, Irina}, title = {Modeling of the Plasmasphere Dynamics}, doi = {10.25932/publishup-48243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482433}, school = {Universit{\"a}t Potsdam}, pages = {xlii, 256}, year = {2020}, abstract = {The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches.}, language = {en} } @article{PickEffenbergerZhelavskayaetal.2019, author = {Pick, Leonie and Effenberger, Frederic and Zhelavskaya, Irina and Korte, Monika}, title = {A Statistical Classifier for Historical Geomagnetic Storm Drivers Derived Solely From Ground-Based Magnetic Field Measurements}, series = {Earth and Space Science}, volume = {6}, journal = {Earth and Space Science}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2019EA000726}, pages = {2000 -- 2015}, year = {2019}, abstract = {Solar wind observations show that geomagnetic storms are mainly driven by interplanetary coronal mass ejections (ICMEs) and corotating or stream interaction regions (C/SIRs). We present a binary classifier that assigns one of these drivers to 7,546 storms between 1930 and 2015 using ground-based geomagnetic field observations only. The input data consists of the long-term stable Hourly Magnetospheric Currents index alongside the corresponding midlatitude geomagnetic observatory time series. This data set provides comprehensive information on the global storm time magnetic disturbance field, particularly its spatial variability, over eight solar cycles. For the first time, we use this information statistically with regard to an automated storm driver identification. Our supervised classification model significantly outperforms unskilled baseline models (78\% accuracy with 26[19]\% misidentified interplanetary coronal mass ejections [corotating or stream interaction regions]) and delivers plausible driver occurrences with regard to storm intensity and solar cycle phase. Our results can readily be used to advance related studies fundamental to space weather research, for example, studies connecting galactic cosmic ray modulation and geomagnetic disturbances. They are fully reproducible by means of the underlying open-source software (Pick, 2019, http://doi.org/10.5880/GFZ.2.3.2019.003)}, language = {en} } @article{ShpritsDrozdovSpasojevicetal.2016, author = {Shprits, Yuri Y. and Drozdov, Alexander and Spasojevic, Maria and Kellerman, Adam C. and Usanova, Maria E. and Engebretson, Mark J. and Agapitov, Oleksiy V. and Zhelavskaya, Irina and Raita, Tero J. and Spence, Harlan E. and Baker, Daniel N. and Zhu, Hui and Aseev, Nikita}, title = {Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms12883}, pages = {7}, year = {2016}, language = {en} } @article{LandisSaikinZhelavskayaetal.2022, author = {Landis, Daji August and Saikin, Anthony and Zhelavskaya, Irina and Drozdov, Alexander and Aseev, Nikita and Shprits, Yuri Y. and Pfitzer, Maximilian F. and Smirnov, Artem G.}, title = {NARX Neural Network Derivations of the Outer Boundary Radiation Belt Electron Flux}, series = {Space Weather: the international journal of research and applications}, volume = {20}, journal = {Space Weather: the international journal of research and applications}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2021SW002774}, pages = {18}, year = {2022}, abstract = {We present two new empirical models of radiation belt electron flux at geostationary orbit. GOES-15 measurements of 0.8 MeV electrons were used to train a Nonlinear Autoregressive with Exogenous input (NARX) neural network for both modeling GOES-15 flux values and an upper boundary condition scaling factor (BF). The GOES-15 flux model utilizes an input and feedback delay of 2 and 2 time steps (i.e., 5 min time steps) with the most efficient number of hidden layers set to 10. Magnetic local time, Dst, Kp, solar wind dynamic pressure, AE, and solar wind velocity were found to perform as predicative indicators of GOES-15 flux and therefore were used as the exogenous inputs. The NARX-derived upper boundary condition scaling factor was used in conjunction with the Versatile Electron Radiation Belt (VERB) code to produce reconstructions of the radiation belts during the period of July-November 1990, independent of in-situ observations. Here, Kp was chosen as the sole exogenous input to be more compatible with the VERB code. This Combined Release and Radiation Effects Satellite-era reconstruction showcases the potential to use these neural network-derived boundary conditions as a method of hindcasting the historical radiation belts. This study serves as a companion paper to another recently published study on reconstructing the radiation belts during Solar Cycles 17-24 (Saikin et al., 2021, ), for which the results featured in this paper were used.}, language = {en} } @article{ShpritsAllisonWangetal.2022, author = {Shprits, Yuri Y. and Allison, Hayley J. and Wang, Dedong and Drozdov, Alexander and Szabo-Roberts, Matyas and Zhelavskaya, Irina and Vasile, Ruggero}, title = {A new population of ultra-relativistic electrons in the outer radiation zone}, series = {Journal of geophysical research : Space physics}, volume = {127}, journal = {Journal of geophysical research : Space physics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2021JA030214}, pages = {34}, year = {2022}, abstract = {Van Allen Probes measurements revealed the presence of the most unusual structures in the ultra-relativistic radiation belts. Detailed modeling, analysis of pitch angle distributions, analysis of the difference between relativistic and ultra-realistic electron evolution, along with theoretical studies of the scattering and wave growth, all indicate that electromagnetic ion cyclotron (EMIC) waves can produce a very efficient loss of the ultra-relativistic electrons in the heart of the radiation belts. Moreover, a detailed analysis of the profiles of phase space densities provides direct evidence for localized loss by EMIC waves. The evolution of multi-MeV fluxes shows dramatic and very sudden enhancements of electrons for selected storms. Analysis of phase space density profiles reveals that growing peaks at different values of the first invariant are formed at approximately the same radial distance from the Earth and show the sequential formation of the peaks from lower to higher energies, indicating that local energy diffusion is the dominant source of the acceleration from MeV to multi-MeV energies. Further simultaneous analysis of the background density and ultra-relativistic electron fluxes shows that the acceleration to multi-MeV energies only occurs when plasma density is significantly depleted outside of the plasmasphere, which is consistent with the modeling of acceleration due to chorus waves.}, language = {en} } @article{ZhelavskayaSpasojevicShpritsetal.2016, author = {Zhelavskaya, Irina and Spasojevic, M. and Shprits, Yuri Y. and Kurth, William S.}, title = {Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft}, series = {Journal of geophysical research : Space physics}, volume = {121}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2015JA022132}, pages = {4611 -- 4625}, year = {2016}, abstract = {We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.}, language = {en} } @article{CaoShpritsNietal.2017, author = {Cao, Xing and Shprits, Yuri Y. and Ni, Binbin and Zhelavskaya, Irina}, title = {Scattering of Ultra-relativistic Electrons in the Van Allen Radiation Belts Accounting for Hot Plasma Effects}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-17739-7}, pages = {7}, year = {2017}, abstract = {Electron flux in the Earth's outer radiation belt is highly variable due to a delicate balance between competing acceleration and loss processes. It has been long recognized that Electromagnetic Ion Cyclotron (EMIC) waves may play a crucial role in the loss of radiation belt electrons. Previous theoretical studies proposed that EMIC waves may account for the loss of the relativistic electron population. However, recent observations showed that while EMIC waves are responsible for the significant loss of ultra-relativistic electrons, the relativistic electron population is almost unaffected. In this study, we provide a theoretical explanation for this discrepancy between previous theoretical studies and recent observations. We demonstrate that EMIC waves mainly contribute to the loss of ultra-relativistic electrons. This study significantly improves the current understanding of the electron dynamics in the Earth's radiation belt and also can help us understand the radiation environments of the exoplanets and outer planets.}, language = {en} } @article{SmirnovBerrendorfShpritsetal.2020, author = {Smirnov, Artem and Berrendorf, Max and Shprits, Yuri Y. and Kronberg, Elena A. and Allison, Hayley J. and Aseev, Nikita and Zhelavskaya, Irina and Morley, Steven K. and Reeves, Geoffrey D. and Carver, Matthew R. and Effenberger, Frederic}, title = {Medium energy electron flux in earth's outer radiation belt (MERLIN)}, series = {Space weather : the international journal of research and applications}, volume = {18}, journal = {Space weather : the international journal of research and applications}, number = {11}, publisher = {American geophysical union, AGU}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2020SW002532}, pages = {20}, year = {2020}, abstract = {The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120-600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis.}, language = {en} } @article{DelCorpoVellanteZhelavskayaetal.2022, author = {Del Corpo, Alfredo and Vellante, Massimo and Zhelavskaya, Irina and Shprits, Yuri Y. and Heilig, Balazs and Reda, Jan and Pietropaolo, Ermanno and Lichtenberger, Janos}, title = {Study of the average ion mass of the dayside magnetospheric plasma}, series = {Journal of geophysical research : Space physics}, volume = {127}, journal = {Journal of geophysical research : Space physics}, number = {10}, publisher = {American Geophysical Union}, address = {Washington, DC}, issn = {2169-9380}, doi = {10.1029/2022JA030605}, pages = {20}, year = {2022}, abstract = {The investigation of heavy ions dynamics and properties in the Earth's magnetosphere is still an important field of research as they play an important role in several space weather aspects. We present a statistical survey of the average ion mass in the dayside magnetosphere made comparing plasma mass density with electron number density measurements and focusing on both spatial and geomagnetic activity dependence. Field line resonance frequency observations across the European quasi-Meridional Magnetometer Array, are used to infer the equatorial plasma mass density in the range of magnetic L-shells 1.6-6.2. The electron number density is derived from local electric field measurements made on Van Allen Probes using the Neural-network-based Upper-hybrid Resonance Determination algorithm. The analysis is conducted separately for the plasmasphere and the plasmatrough during favorable periods for which both the plasma parameters are observed simultaneously. We found that throughout the plasmasphere the average ion mass is similar or equal to 1 amu for a wide range of geomagnetic activity conditions, suggesting that the plasma mainly consist of hydrogen ions, without regard to the level of geomagnetic activity. Conversely, the plasmatrough is characterized by a variable composition, highlighting a heavy ion mass loading that increases with increasing levels of geomagnetic disturbance. During the most disturbed conditions, the average radial structure shows a broad maximum around 3-4 Earth radii, probably correlated with the accumulation of oxygen ions near the plasmapause. Those ions are mostly observed in the post-dawn and pre-dusk longitudinal sectors.}, language = {en} }