@article{FrodlJanowitzSchmaaletal.2017, author = {Frodl, Thomas and Janowitz, Deborah and Schmaal, Lianne and Tozzi, Leonardo and Dobrowolny, Henrik and Stein, Dan J. and Veltman, Dick J. and Wittfeld, Katharina and van Erp, Theo G. M. and Jahanshad, Neda and Block, Andrea and Hegenscheid, Katrin and Voelzke, Henry and Lagopoulos, Jim and Hatton, Sean N. and Hickie, Ian B. and Frey, Eva Maria and Carballedo, Angela and Brooks, Samantha J. and Vuletic, Daniella and Uhlmann, Anne and Veer, Ilya M. and Walter, Henrik and Schnell, Knut and Grotegerd, Dominik and Arolt, Volker and Kugel, Harald and Schramm, Elisabeth and Konrad, Carsten and Zurowski, Bartosz and Baune, Bernhard T. and van der Wee, Nic J. A. and van Tol, Marie-Jose and Penninx, Brenda W. J. H. and Thompson, Paul M. and Hibar, Derrek P. and Dannlowski, Udo and Grabe, Hans J.}, title = {Childhood adversity impacts on brain subcortical structures relevant to depression}, series = {Journal of psychiatric research}, volume = {86}, journal = {Journal of psychiatric research}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-3956}, doi = {10.1016/j.jpsychires.2016.11.010}, pages = {58 -- 65}, year = {2017}, abstract = {Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression. (C) 2016 Published by Elsevier Ltd.}, language = {en} } @article{SchorckChristliebCohenetal.2009, author = {Schorck, Torben and Christlieb, Norbert and Cohen, Judy G. and Beers, Timothy C. and Shectman, Steve and Thompson, Ian and McWilliam, Andrew and Bessell, Michael S. and Norris, John E. and Mel{\´e}ndez, Jorge and Ram{\"i}rez, Solange and Haynes, D. and Cass, Paul and Hartley, Malcolm and Russell, Ken and Watson, Fred and Zickgraf, Franz-Josef and Behnke, Berit and Fechner, Cora and Fuhrmeister, Birgit and Barklem, Paul S. and Edvardsson, Bengt and Frebel, Anna and Wisotzki, Lutz and Reimers, Dieter}, title = {The stellar content of the Hamburg/ESO survey : V. the metallicity distribution function of the Galactic halo}, issn = {0004-6361}, doi = {10.1051/0004-6361/200810925}, year = {2009}, abstract = {We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strategy for spectroscopic follow-up observations of the metal-poor candidates, namely "best and brightest stars first". Comparison of the metallicities [Fe/H] of the stars determined from moderate-resolution (i.e., R similar to 2000) follow-up spectra with results derived from abundance analyses based on high-resolution spectra (i.e., R > 20 000) shows that the [Fe/H] estimates used for the determination of the halo MDF are accurate to within 0.3 dex, once highly C-rich stars are eliminated. We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z(cr) = 10(-3.4) Z(circle dot) reproduces the sharp drop at [Fe/H] similar to -3.6 present in the HES MDF. Although currently about ten stars at [Fe/H] < -3.6 are known, the evidence for the existence of a tail of the halo MDF extending to [Fe/H] similar to -5.5 is weak from the sample considered in this paper, because it only includes two stars [Fe/H] < -3.6. Therefore, a comparison with theoretical models has to await larger statistically complete and unbiased samples. A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant.}, language = {en} }