@article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{WangZhouShuetal.2014, author = {Wang, Aiping and Zhou, Wei and Shu, Hua and Yan, Ming}, title = {Reading proficiency modulates parafoveal processing efficiency: Evidence from reading Chinese as a second language}, series = {Acta psychologica : international journal of psychonomics}, volume = {152}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2014.07.010}, pages = {29 -- 33}, year = {2014}, abstract = {In the present study, we manipulated different types of information available in the parafovea during the reading of Chinese sentences and examined how native Korean readers who learned Chinese as a second language make use of the parafoveal information. Results clearly indicate that, only identical and orthographically similar previews facilitated processing of the target words when they were subsequently fixated. More critically, more parafoveal information was obtained by subjects with higher reading proficiency. These results suggest that, mainly low-level features of the parafoveal words are obtained by the non-native Chinese readers and less attentional resources are available for the readers with lower reading proficiency, thereby causing a reduction of the perceptual span.}, language = {en} } @article{PanShuWangetal.2015, author = {Pan, Jinger and Shu, Hua and Wang, Yuling and Yan, Ming}, title = {Parafoveal activation of sign translation previews among deaf readers during the reading of Chinese sentences}, series = {Memory \& cognition}, volume = {43}, journal = {Memory \& cognition}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0090-502X}, doi = {10.3758/s13421-015-0511-9}, pages = {964 -- 972}, year = {2015}, abstract = {In the present study, we manipulated the different types of information available in the parafovea during the reading of Chinese sentences and examined whether deaf readers could activate sign translations of Chinese words during reading. The main finding was that, as compared to unrelated previews, the deaf readers had longer fixation durations on the target words when sign-phonologically related preview words were presented; this preview cost effect due to sign-phonological relatedness was absent for reading-level-matched hearing individuals. These results indicate that Chinese deaf readers activate sign language translations of parafoveal words during reading. We discuss the implications for notions of parafoveal processing in reading.}, language = {en} } @article{WangYeonZhouetal.2016, author = {Wang, Aiping and Yeon, Junmo and Zhou, Wei and Shu, Hua and Yan, Ming}, title = {Cross-language parafoveal semantic processing: Evidence from Korean-Chinese bilinguals}, series = {Applied physics letters}, volume = {23}, journal = {Applied physics letters}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-015-0876-6}, pages = {285 -- 290}, year = {2016}, abstract = {In the present study, we aimed at testing cross-language cognate and semantic preview effects. We tested how native Korean readers who learned Chinese as a second language make use of the parafoveal information during the reading of Chinese sentences. There were 3 types of Korean preview words: cognate translations of the Chinese target words, semantically related noncognate words, and unrelated words. Together with a highly significant cognate preview effect, more critically, we also observed reliable facilitation in processing of the target word from the semantically related previews in all fixation measures. Results from the present study provide first evidence for semantic processing from parafoveally presented Korean words and for cross-language parafoveal semantic processing.}, language = {en} } @article{WangKoehlerCaoetal.2012, author = {Wang, Wei-Hong and K{\"o}hler, Barbara and Cao, Feng-Qiu and Liu, Guo-Wei and Gong, Yuan-Yong and Sheng, Song and Song, Qi-Chao and Cheng, Xiao-Yuan and Garnett, Trevor and Okamoto, Mamoru and Qin, Rui and M{\"u}ller-R{\"o}ber, Bernd and Tester, Mark and Liu, Lai-Hua}, title = {Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis}, series = {New phytologist : international journal of plant science}, volume = {193}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03929.x}, pages = {432 -- 444}, year = {2012}, abstract = {Despite the great agricultural and ecological importance of efficient use of urea-containing nitrogen fertilizers by crops, molecular and physiological identities of urea transport in higher plants have been investigated only in Arabidopsis. We performed short-time urea-influx assays which have identified a low-affinity and high-affinity (Km of 7.55 mu M) transport system for urea-uptake by rice roots (Oryza sativa). A high-affinity urea transporter OsDUR3 from rice was functionally characterized here for the first time among crops. OsDUR3 encodes an integral membrane-protein with 721 amino acid residues and 15 predicted transmembrane domains. Heterologous expression demonstrated that OsDUR3 restored yeast dur3-mutant growth on urea and facilitated urea import with a Km of c. 10 mu M in Xenopus oocytes. Quantitative reverse-transcription polymerase chain reaction (qPCR) analysis revealed upregulation of OsDUR3 in rice roots under nitrogen-deficiency and urea-resupply after nitrogen-starvation. Importantly, overexpression of OsDUR3 complemented the Arabidopsis atdur3-1 mutant, improving growth on low urea and increasing root urea-uptake markedly. Together with its plasma membrane localization detected by green fluorescent protein (GFP)-tagging and with findings that disruption of OsDUR3 by T-DNA reduces rice growth on urea and urea uptake, we suggest that OsDUR3 is an active urea transporter that plays a significant role in effective urea acquisition and utilisation in rice.}, language = {en} } @article{TownsleyBroosCorcoranetal.2011, author = {Townsley, Leisa K. and Broos, Patrick S. and Corcoran, Michael F. and Feigelson, Eric D. and Gagne, Marc and Montmerle, Thierry and Oey, M. S. and Smith, Nathan and Garmire, Gordon P. and Getman, Konstantin V. and Povich, Matthew S. and Evans, Nancy Remage and Naze, Yael and Parkin, E. R. and Preibisch, Thomas and Wang, Junfeng and Wou, Scott J. and Chu, You-Hua and Cohen, David H. and Gruendl, Robert A. and Hamaguchi, Kenji and King, Robert R. and Mac Low, Mordecai-Mark and McCaughrean, Mark J. and Moffat, Anthony F. J. and Oskinova, Lida and Pittard, Julian M. and Stassun, Keivan G. and Ud-Doula, Asif and Walborn, Nolan R. and Waldron, Wayne L. and Churchwell, Ed and Nictiols, J. S. and Owocki, Stanley P. and Schulz, Norbert S.}, title = {An introduction to the chandra carina complex project}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {194}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.1088/0067-0049/194/1/1}, pages = {28}, year = {2011}, abstract = {The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant H II regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60 ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of > 14,000 X-ray point sources;> 9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, providing a foundation for the 15 papers that follow in this special issue and that present detailed catalogs, methods, and science results.}, language = {en} } @article{NazeWangChuetal.2014, author = {Naze, Yael and Wang, Q. Daniel and Chu, You-Hua and Gruendl, Robert and Oskinova, Lida}, title = {A deep chandra observation of the giant HII region N11. I. x-ray sorces in the field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {213}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.1088/0067-0049/213/2/23}, pages = {20}, year = {2014}, abstract = {A very sensitive X-ray investigation of the giant HII region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10(32) erg s(-1), increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log(L-X/L-BOL) similar to -6.5 to -7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log(L-X/L-BOL) similar to -7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.}, language = {en} } @article{WeissWaltersMorishitaetal.2020, author = {Weiss, Jonathan R. and Walters, Richard J. and Morishita, Yu and Wright, Tim J. and Lazecky, Milan and Wang, Hua and Hussain, Ekbal and Hooper, Andrew J. and Elliott, John R. and Rollins, Chris and Yu, Chen and Gonzalez, Pablo J. and Spaans, Karsten and Li, Zhenhong and Parsons, Barry}, title = {High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {17}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL087376}, pages = {12}, year = {2020}, abstract = {Measurements of present-day surface deformation are essential for the assessment of long-term seismic hazard. The European Space Agency's Sentinel-1 satellites enable global, high-resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the first similar to 5 years of Sentinel-1 data to measure surface motions for the similar to 800,000-km(2) Anatolian region. Our new 3-D velocity and strain rate fields illuminate deformation patterns dominated by westward motion of Anatolia relative to Eurasia, localized strain accumulation along the North and East Anatolian Faults, and rapid vertical signals associated with anthropogenic activities and to a lesser extent extension across the grabens of western Anatolia. We show that automatically processed Sentinel-1 InSAR data can characterize details of the velocity and strain rate fields with high resolution and accuracy over large regions. These results are important for assessing the relationship between strain accumulation and release in earthquakes.
Plain Language Summary Satellite-based measurements of small rates of motion of the Earth's surface made at high spatial resolutions and over large areas are important for many geophysical applications including improving earthquake hazard models. We take advantage of recent advances in geodetic techniques in order to measure surface velocities and tectonic strain accumulation across the Anatolia region, including the highly seismogenic and often deadly North Anatolian Fault. We show that by combining Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data with Global Navigation Satellite System (GNSS) measurements we can enhance our view of surface deformation associated with active tectonics, the earthquake cycle, and anthropogenic processes.}, language = {en} } @article{ZhouWangShuetal.2018, author = {Zhou, Wei and Wang, Aiping and Shu, Hua and Kliegl, Reinhold and Yan, Ming}, title = {Word segmentation by alternating colors facilitates eye guidance in Chinese reading}, series = {Memory \& cognition}, volume = {46}, journal = {Memory \& cognition}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0090-502X}, doi = {10.3758/s13421-018-0797-5}, pages = {729 -- 740}, year = {2018}, abstract = {During sentence reading, low spatial frequency information afforded by spaces between words is the primary factor for eye guidance in spaced writing systems, whereas saccade generation for unspaced writing systems is less clear and under debate. In the present study, we investigated whether word-boundary information, provided by alternating colors (consistent or inconsistent with word-boundary information) influences saccade-target selection in Chinese. In Experiment 1, as compared to a baseline (i.e., uniform color) condition, word segmentation with alternating color shifted fixation location towards the center of words. In contrast, incorrect word segmentation shifted fixation location towards the beginning of words. In Experiment 2, we used a gaze-contingent paradigm to restrict the color manipulation only to the upcoming parafoveal words and replicated the results, including fixation location effects, as observed in Experiment 1. These results indicate that Chinese readers are capable of making use of parafoveal word-boundary knowledge for saccade generation, even if such information is unfamiliar to them. The present study provides novel support for the hypothesis that word segmentation is involved in the decision about where to fixate next during Chinese reading.}, language = {en} }