@article{Herzschuh2019, author = {Herzschuh, Ulrike}, title = {Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {29}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {2}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.13018}, pages = {198 -- 206}, year = {2019}, abstract = {Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.}, language = {en} } @article{KruseGerdesKathetal.2018, author = {Kruse, Stefan and Gerdes, Alexander and Kath, Nadja J. and Herzschuh, Ulrike}, title = {Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-4451-2018}, pages = {4451 -- 4467}, year = {2018}, abstract = {It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models.}, language = {en} } @article{TianCaoDallmeyeretal.2018, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Lohmann, Gerrit and Zhang, Xu and Ni, Jian and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Rudaya, Natalia and Xu, Qinghai and Herzschuh, Ulrike}, title = {Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP}, series = {Vegetation History and Archaeobotany}, volume = {27}, journal = {Vegetation History and Archaeobotany}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-017-0653-8}, pages = {365 -- 379}, year = {2018}, abstract = {Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species.}, language = {en} } @article{SainiGuentherAichneretal.2017, author = {Saini, Jeetendra and Guenther, Franziska and Aichner, Bernhard and Mischke, Steffen and Herzschuh, Ulrike and Zhang, Chengjun and Maeusbacher, Roland and Gleixner, Gerd}, title = {Climate variability in the past similar to 19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {157}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.12.023}, pages = {129 -- 140}, year = {2017}, abstract = {We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The SD of nC(23) is influenced by lake water evaporation; the BD. values of sedimentary nC(29) are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial(18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low delta D values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (similar to 17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher delta D values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of 813 along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered SD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Belling-Allered warm complex and early -Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values-32\%o indicate the absence of C-4 -type vegetation in the region contradicting with their presence in the Lake Qinghai record. The 81) record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau. (C) 2017 The Authors. Published by Elsevier Ltd.}, language = {en} } @article{LiLiuHerzschuhetal.2018, author = {Li, Huashu and Liu, Xingqi and Herzschuh, Ulrike and Cao, Xianyong and Yu, Zhitong and Wang, Yong}, title = {Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China}, series = {Review of palaeobotany and palynology : an international journal}, volume = {262}, journal = {Review of palaeobotany and palynology : an international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0034-6667}, doi = {10.1016/j.revpalbo.2018.12.006}, pages = {44 -- 51}, year = {2018}, abstract = {The climate conditions during Marine Isotope Stage (MIS) 3 were similar to present-day conditions, but whether humidity then exceeded present levels is debated, and the driving mechanisms of palaeoclimate evolution since MIS 3 remain unclear. Here, we use pollen data from Wulagai Lake, Inner Mongolia, to reconstruct vegetation and climate changes since the middle MIS 3. The steppe biome is reconstructed as the first dominant biome and the desert biome as the second, and the results show that the vegetation was steppe over the last 43,800 years. Poaceae, Artemisia, Caryophyllaceae and Humulus were abundant from middle to late MIS 3, indicating humid climate conditions. As drought-tolerant species such as Hippophae, Nitraria and Chenopodiaceae spread during MIS 2, the climate became arid. The Holocene is characterized by the dominance of steppe with mixed coniferous-broadleaved forests in the Greater Hinggan Range, and the desert biome retains high affinity scores, indicating that the climate was semi-arid. The climate from middle to late MIS 3 was wetter than in the Holocene; this shift was related to changes in the Northern Hemisphere's solar insolation and ice volume. The humid conditions during MIS 3 were attributed to strong ice-albedo feedback, which led to evaporation that was less than the precipitation. The enhanced evaporation caused by increased solar insolation and decreased ice volume might have exceeded the precipitation during the Holocene and resulted in low effective humidity in the Wulagai Lake basin.}, language = {en} } @article{WieczorekHerzschuh2020, author = {Wieczorek, Mareike and Herzschuh, Ulrike}, title = {Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics}, series = {Earth system science data : ESSD}, volume = {12}, journal = {Earth system science data : ESSD}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-12-3515-2020}, pages = {3515 -- 3528}, year = {2020}, abstract = {Relative pollen productivity (RPP) estimates are fractionate values, often in relation to Poaceae, that allow vegetation cover to be estimated from pollen counts with the help of models. RPP estimates are especially used in the scientific community in Europe and China, with a few studies in North America. Here we present a comprehensive compilation of available northern hemispheric RPP studies and their results arising from 51 publications with 60 sites and 131 taxa. This compilation allows scientists to identify data gaps in need of further RPP analyses but can also aid them in finding an RPP set for their study region. We also present a taxonomically harmonised, unified RPP dataset for the Northern Hemisphere and subsets for North America (including Greenland), Europe (including arctic Russia), and China, which we generated from the available studies. The unified dataset gives the mean RPP for 55 harmonised taxa as well as fall speeds, which are necessary to reconstruct vegetation cover from pollen counts and RPP values. Data are openly available at https://doi.org/10.1594/PANGAEA.922661 (Wieczorek and Herzschuh, 2020).}, language = {en} } @misc{WangHerzschuhLiuetal.2017, author = {Wang, Yongbo and Herzschuh, Ulrike and Liu, Xingqi and Korup, Oliver and Diekmann, Bernhard}, title = {Reply to Chong Xu's comment on: Wang, Yongbo; Herzschuh, Ulrike; Liu, Xingqi; Korup, Oliver; Diekmann, Bernhard: A high-resolution sedimentary archive from landslide-dammed Lake Mengda, north-eastern Tibetan Plateau. - Journal of Paleolimnology. - 51 (2014), S. 303 - 312}, series = {Journal of paleolimnolog}, volume = {57}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-016-9937-8}, pages = {163 -- 164}, year = {2017}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean science}, volume = {16}, journal = {Ocean science}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1812-0784}, doi = {10.5194/os-16-1017-2020}, pages = {1017 -- 1032}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7\% of our sequences being assigned to diatoms across 18 different families, with 38.6\% of them being resolved to species and 25.8\% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2\% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean Science}, volume = {16}, journal = {Ocean Science}, number = {5}, publisher = {Springer}, address = {Tokyo}, pages = {16}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 \% of our sequences being assigned to diatoms across 18 different families, with 38.6 \% of them being resolved to species and 25.8 \% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 \% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{TabaresJimenezZimmermannDietzeetal.2019, author = {Tabares Jimenez, Ximena del Carmen and Zimmermann, Heike Hildegard and Dietze, Elisabeth and Ratzmann, Gregor and Belz, Lukas and Vieth-Hillebrand, Andrea and Dupont, Lydie and Wilkes, Heinz and Mapani, Benjamin and Herzschuh, Ulrike}, title = {Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5955}, pages = {962 -- 979}, year = {2019}, abstract = {Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schirrmeister, Lutz and Schwamborn, Georg and Herzschuh, Ulrike}, title = {The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data}, series = {Genes}, volume = {8}, journal = {Genes}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8100273}, pages = {273}, year = {2017}, abstract = {Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol'shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-575-2017}, pages = {575 -- 596}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @article{SchirrmeisterBobrovRaschkeetal.2018, author = {Schirrmeister, Lutz and Bobrov, Anatoly and Raschke, Elena and Herzschuh, Ulrike and Strauss, Jens and Pestryakova, Luidmila Agafyevna and Wetterich, Sebastian}, title = {Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {50}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {1}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1080/15230430.2018.1462595}, pages = {18}, year = {2018}, abstract = {Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.}, language = {en} } @article{PestryakovaHerzschuhGorodnichevetal.2018, author = {Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike and Gorodnichev, Ruslan and Wetterich, Sebastian}, title = {The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables}, series = {Polar research : a Norwegian journal of Polar research}, volume = {37}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0800-0395}, doi = {10.1080/17518369.2018.1485625}, pages = {16}, year = {2018}, abstract = {Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions.}, language = {en} } @article{KruseEppWieczoreketal.2018, author = {Kruse, Stefan and Epp, Laura Saskia and Wieczorek, Mareike and Pestryakova, Luidmila Agafyevna and Stoof-Leichsenring, Kathleen Rosemarie and Herzschuh, Ulrike}, title = {High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites}, series = {Tree Genetics \& Genomes}, volume = {14}, journal = {Tree Genetics \& Genomes}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1614-2942}, doi = {10.1007/s11295-018-1235-3}, pages = {14}, year = {2018}, abstract = {Arctic treelines are facing a strong temperature increase as a result of recent global warming, causing possible changes in forest extent, which will alter vegetation-climate feedbacks. However, the mode and strength of the response is rather unclear, as potential changes are happening in areas that are very remote and difficult to access, and empirical data are still largely lacking. Here, we assessed the current population structure and genetic differentiation of Larix Mill. tree stands within the northernmost latitudinal treeline reaching ~ 72° N in the southern lowlands of the Taymyr Peninsula (~ 100° E). We sampled 743 individuals belonging to different height classes (seedlings, saplings, trees) at 11 locations along a gradient from 'single tree' tundra over 'forest line' to 'dense forest' stands and conducted investigations applying eight highly polymorphic nuclear microsatellites. Results suggest a high diversity within sub-populations (HE = 0.826-0.893), coupled, however, with heterozygote deficits in all sub-populations, but pronounced in 'forest line' stands. Overall, genetic differentiation of sub-populations is low (FST = 0.005), indicating a region-wide high gene flow, although 'forest line' stands harbour few rare and private alleles, likely indicating greater local reproduction. 'Single tree' stands, located beyond the northern forest line, are currently not involved in treeline expansion, but show signs of a long-term refuge, namely asexual reproduction and change of growth-form from erect to creeping growth, possibly having persisted for thousands of years. The lack of differentiation between the sub-populations points to a sufficiently high dispersal potential, and thus a rapid northward migration of the Siberian arctic treeline under recent global warming seems potentially unconstrained, but observations show it to be unexpectedly slow.}, language = {en} } @article{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-35550-w}, pages = {9}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @article{WieczorekKolmogorovKruseetal.2017, author = {Wieczorek, Mareike and Kolmogorov, Alexei and Kruse, Stefan and Jacobsen, Inga and Nitze, Ingmar and Nikolaev, Anatoly N. and Heinrich, Ingo and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Disturbance-effects on treeline larch-stands in the lower Kolyma River area (NE Siberia)}, series = {Silva Fennica : a quarterly journal for forest science}, volume = {51}, journal = {Silva Fennica : a quarterly journal for forest science}, number = {3}, publisher = {The Finnish Society of Forest Science}, address = {Helsinki}, issn = {0037-5330}, doi = {10.14214/sf.1666}, pages = {20}, year = {2017}, abstract = {Tree stands in the boreal treeline ecotone are, in addition to climate change, impacted by disturbances such as fire, water-related disturbances and logging. We aim to understand how these disturbances affect growth, age structure, and spatial patterns of larch stands in the north-eastern Siberian treeline ecotone (lower Kolyma River region), an insufficiently researched region. Stand structure of Larix cajanderi Mayr was studied at seven sites impacted by disturbances. Maximum tree age ranged from 44 to 300 years. Young to medium-aged stands had, independent of disturbance type, the highest stand densities with over 4000 larch trees per ha. These sites also had the highest growth rates for tree height and stem diameter. Overall lowest stand densities were found in a polygonal field at the northern end of the study area, with larches growing in distinct " tree islands". At all sites, saplings are significantly clustered. Differences in fire severity led to contrasting stand structures with respect to tree, recruit, and overall stand densities. While a low severity fire resulted in low-density stands with high proportions of small and young larches, high severity fires resulted in high-density stands with high proportions of big trees. At waterdisturbed sites, stand structure varied between waterlogged and drained sites and latitude. These mixed effects of climate and disturbance make it difficult to predict future stand characteristics and the treeline position.}, language = {en} } @article{KruseKolmogorovPestryakovaetal.2020, author = {Kruse, Stefan and Kolmogorov, Aleksey I. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.6660}, pages = {10017 -- 10030}, year = {2020}, abstract = {The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76\%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.}, language = {en} } @misc{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512438}, pages = {19}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @misc{CaoHerzschuhNietal.2014, author = {Cao, Xianyong and Herzschuh, Ulrike and Ni, Jian and Zhao, Yan and B{\"o}hmer, Thomas}, title = {Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years}, series = {The Holocene}, volume = {25}, journal = {The Holocene}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404176}, pages = {13}, year = {2014}, abstract = {This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5 kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa.}, language = {en} } @article{TianCaoDallmeyeretal.2016, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Ni, Jian and Zhao, Yan and Wang, Yongbo and Herzschuh, Ulrike}, title = {Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {137}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.001}, pages = {33 -- 44}, year = {2016}, abstract = {We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{CaoTianTelfordetal.2017, author = {Cao, Xianyong and Tian, Fang and Telford, Richard J. and Ni, Jian and Xu, Qinghai and Chen, Fahu and Liu, Xingqi and Stebich, Martina and Zhao, Yan and Herzschuh, Ulrike}, title = {Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {178}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.030}, pages = {37 -- 53}, year = {2017}, abstract = {Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LiLiuWangetal.2017, author = {Li, Kai and Liu, Xingqi and Wang, Yongbo and Herzschuh, Ulrike and Ni, Jian and Liao, Mengna and Xiao, Xiayun}, title = {Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {177}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.020}, pages = {235 -- 245}, year = {2017}, abstract = {The Indian Summer Monsoon (ISM) is one of the most important climate systems, whose variability and driving mechanisms are of broad interest for academic and societal communities. Here, we present a well-dated high-resolution pollen analysis from a 4.82-m long sediment core taken from Basomtso, in the southeastern Tibetan Plateau (TP), which depicts the regional climate changes of the past millennium. Our results show that subalpine coniferous forest was dominant around Basomtso from ca. 867 to ca. 750 cal. yr BP, indicating a warm and semi-humid climate. The timberline in the study area significantly decreased from ca. 750 to ca.100 cal. yr BP, and a cold climate, corresponding to the Little Ice Age (LIA) prevailed. Since ca. 100 cal. yr BP, the vegetation type changed to forest-meadow with rising temperatures and moisture. Ordination analysis reveals that the migration of vegetation was dominated by regional temperatures and then by moisture. Further comparisons between the Basomtso pollen record and the regional temperature reconstructions underscore the relevance of the Basomtso record from the southeastern TP for regional and global climatologies. Our pollen based moisture reconstruction demonstrates the strong multicentennial-scale link to ISM variability, providing solid evidence for the increase of monsoonal strengths over the past four centuries. Spectral analysis indicates the potential influence of solar forcing. However, a closer relationship has been observed between multicentennial ISM variations and Indian Ocean sea surface temperature anomalies (SSTs), suggesting that the variations in monsoonal precipitation over the southeastern TP are probably driven by the Indian Ocean Dipole on the multicentennial scale. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LiWangHerzschuhetal.2022, author = {Li, Zhen and Wang, Yongbo and Herzschuh, Ulrike and Cao, Xianyong and Ni, Jian and Zhao, Yan}, title = {Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {604}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2022.111190}, pages = {12}, year = {2022}, abstract = {Reconstruction of past vegetation change is critical for better understanding the potential impact of future global change on the fragile alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). In this paper, pollen assemblages comprising 58 records from the QTP, spanning the past 15 kyrs, were collected to reconstruct biome compositions using a standard approach. Six forest biomes were identified mainly on the southeastern plateau, exhibiting a pattern of gradual expansion along the eastern margin during early to mid-Holocene times. The alpine meadow biome was separately identified based on an updated scheme, and showed notable westward expansions towards lower latitudes and higher altitudes during early Holocene times. Consistent patterns of migration could also be identified for the alpine steppe biome, which moved eastward during the late Holocene after 4 ka. As the dominant biome type, temperate steppe was distributed widely over the QTP with minor migration patterns, except for a progressive expansion to lower altitudes in the late Holocene times. The desert biome was inferred mainly as covering the northwestern plateau and the Qaidam Basin, in relatively restricted areas. The spatial distribution of the reconstructed biomes represent the large-scale vegetation gradient on the QTP. Monsoonal precipitation expressed predominant controls on the development of alpine ecosystems, while the variations in desert vegetation responded to regional moisture brought by the mid-latitude Westerlies. Temperature changes played relatively minor roles in the variations of alpine vegetation, but exerted more significant impacts on the forest biomes.}, language = {en} } @misc{KruseGerdesKathetal.2018, author = {Kruse, Stefan and Gerdes, Alexander and Kath, Nadja J. and Herzschuh, Ulrike}, title = {Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {929}, issn = {1866-8372}, doi = {10.25932/publishup-44597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445978}, pages = {4451 -- 4467}, year = {2018}, abstract = {It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models.}, language = {en} } @article{GengAndreevKruseetal.2022, author = {Geng, Rongwei and Andreev, Andrei and Kruse, Stefan and Heim, Birgit and van Geffen, Femke and Pestryakova, Luidmila and Zakharov, Evgenii and Troeva, Elena I. and Shevtsova, Iuliia and Li, Furong and Zhao, Yan and Herzschuh, Ulrike}, title = {Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for Major Taxa}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.837857}, pages = {17}, year = {2022}, abstract = {Modern pollen-vegetation-climate relationships underpin palaeovegetation and palaeoclimate reconstructions from fossil pollen records. East Siberia is an ideal area for investigating the relationships between modern pollen assemblages and near natural vegetation under cold continental climate conditions. Reliable pollen-based quantitative vegetation and climate reconstructions are still scarce due to the limited number of modern pollen datasets. Furthermore, differences in pollen representation of samples from lake sediments and soils are not well understood. Here, we present a new pollen dataset of 48 moss/soil and 24 lake surface-sediment samples collected in Chukotka and central Yakutia in East Siberia. The pollen-vegetation-climate relationships were investigated by ordination analyses. Generally, tundra and taiga vegetation types can be well distinguished in the surface pollen assemblages. Moss/soil and lake samples contain generally similar pollen assemblages as revealed by a Procrustes comparison with some exceptions. Overall, modern pollen assemblages reflect the temperature and precipitation gradients in the study areas as revealed by constrained ordination analysis. We estimate the relative pollen productivity (RPP) of major taxa and the relevant source area of pollen (RSAP) for moss/soil samples from Chukotka and central Yakutia using Extended R-Value (ERV) analysis. The RSAP of the tundra-forest transition area in Chukotka and taiga area in central Yakutia are ca. 1300 and 360 m, respectively. For Chukotka, RPPs relative to both Poaceae and Ericaceae were estimated while RPPs for central Yakutia were relative only to Ericaceae. Relative to Ericaceae (reference taxon, RPP = 1), Larix, Betula, Picea, and Pinus are overrepresented while Alnus, Cyperaceae, Poaceae, and Salix are underrepresented in the pollen spectra. Our estimates are in general agreement with previously published values and provide the basis for reliable quantitative reconstructions of East Siberian vegetation.}, language = {en} } @misc{DietzeMangelsdorfAndreevetal.2020, author = {Dietze, Elisabeth and Mangelsdorf, Kai and Andreev, Andrei and Karger, Cornelia and Schreuder, Laura T. and Hopmans, Ellen C. and Rach, Oliver and Sachse, Dirk and Wennrich, Volker and Herzschuh, Ulrike}, title = {Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51684}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516843}, pages = {22}, year = {2020}, abstract = {Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes.}, language = {en} } @misc{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {670}, issn = {1866-8372}, doi = {10.25932/publishup-41713}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417130}, pages = {22}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @misc{DallmeyerClaussenNietal.2017, author = {Dallmeyer, Anne and Claussen, Martin and Ni, Jian and Cao, Xianyong and Wang, Yongbo and Fischer, Nils and Pfeiffer, Madlene and Jin, Liya and Khon, Vyacheslav and Wagner, Sebastian and Haberkorn, Kerstin and Herzschuh, Ulrike}, title = {Biome changes in Asia since the mid-Holocene}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {643}, issn = {1866-8372}, doi = {10.25932/publishup-41875}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418755}, pages = {107 -- 134}, year = {2017}, abstract = {The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21\% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.}, language = {en} } @misc{StoofLeichsenringPestryakovaEppetal.2020, author = {Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Epp, Laura Saskia and Herzschuh, Ulrike}, title = {Phylogenetic diversity and environment form assembly rules for Arctic diatom genera}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-51548}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515485}, pages = {16}, year = {2020}, abstract = {Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming.}, language = {en} } @misc{Herzschuh2020, author = {Herzschuh, Ulrike}, title = {Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52405}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524057}, pages = {11}, year = {2020}, abstract = {Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.}, language = {en} } @article{vonHippelStoofLeichsenringSchulteetal.2022, author = {von Hippel, Barbara and Stoof-Leichsenring, Kathleen R. and Schulte, Luise and Seeber, Peter Andreas and Epp, Laura Saskia and Biskaborn, Boris and Diekmann, Bernhard and Melles, Martin and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-term funguseplant covariation from multi-site sedimentary ancient DNA metabarcoding}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {295}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107758}, pages = {18}, year = {2022}, abstract = {Climate change has a major impact on arctic and boreal terrestrial ecosystems as warming leads to northward treeline shifts, inducing consequences for heterotrophic organisms associated with the plant taxa. To unravel ecological dependencies, we address how long-term climatic changes have shaped the co-occurrence of plants and fungi across selected sites in Siberia. We investigated sedimentary ancient DNA from five lakes spanning the last 47,000 years, using the ITS1 marker for fungi and the chloroplast P6 loop marker for vegetation metabarcoding. We obtained 706 unique fungal operational taxonomic units (OTUs) and 243 taxa for the plants. We show higher OTU numbers in dry forest tundra as well as boreal forests compared to wet southern tundra. The most abundant fungal taxa in our dataset are Pseudeurotiaceae, Mortierella, Sordariomyceta, Exophiala, Oidiodendron, Protoventuria, Candida vartiovaarae, Pseudeurotium, Gryganskiella fimbricystis, and Tricho-sporiella cerebriformis. The overall fungal composition is explained by the plant composition as revealed by redundancy analysis. The fungal functional groups show antagonistic relationships in their climate susceptibility. The advance of woody taxa in response to past warming led to an increase in the abun-dance of mycorrhizae, lichens, and parasites, while yeast and saprotroph distribution declined. We also show co-occurrences between Salicaceae, Larix, and Alnus and their associated pathogens and detect higher mycorrhizal fungus diversity with the presence of Pinaceae. Under future warming, we can expect feedbacks between fungus composition and plant diversity changes which will affect forest advance, species diversity, and ecosystem stability in arctic regions.}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} } @article{StoofLeichsenringPestryakovaEppetal.2020, author = {Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Epp, Laura Saskia and Herzschuh, Ulrike}, title = {Phylogenetic diversity and environment form assembly rules for Arctic diatom genera}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0305-0270}, doi = {10.1111/jbi.13786}, pages = {1166 -- 1179}, year = {2020}, abstract = {Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming.}, language = {en} } @article{NiemeyerEppStoofLeichsenringetal.2017, author = {Niemeyer, Bastian and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline}, series = {Molecular ecology resources}, volume = {17}, journal = {Molecular ecology resources}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12689}, pages = {e46 -- e62}, year = {2017}, abstract = {Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north-south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single-tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition.}, language = {en} } @article{DvornikovLeibmanHeimetal.2018, author = {Dvornikov, Yury and Leibman, Marina and Heim, Birgit and Bartsch, Annett and Herzschuh, Ulrike and Skorospekhova, Tatiana and Fedorova, Irina and Khomutov, Artem and Widhalm, Barbara and Gubarkov, Anatoly and R{\"o}ßler, Sebastian}, title = {Terrestrial CDOM in lakes of Yamal Peninsula}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10020167}, pages = {21}, year = {2018}, abstract = {In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4\% and 28.4\% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces.}, language = {en} } @article{KruseWieczorekJeltschetal.2016, author = {Kruse, Stefan and Wieczorek, Mareike and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {338}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2016.08.003}, pages = {101 -- 121}, year = {2016}, language = {en} } @article{MarquerGaillardSugitaetal.2017, author = {Marquer, Laurent and Gaillard, Marie-Jose and Sugita, Shinya and Poska, Anneli and Trondman, Anna-Kari and Mazier, Florence and Nielsen, Anne Birgitte and Fyfe, Ralph M. and Jonsson, Anna Maria and Smith, Benjamin and Kaplan, Jed O. and Alenius, Teija and Birks, H. John B. and Bjune, Anne E. and Christiansen, Jorg and Dodson, John and Edwards, Kevin J. and Giesecke, Thomas and Herzschuh, Ulrike and Kangur, Mihkel and Koff, Tiiu and Latalowa, Maligorzata and Lechterbeck, Jutta and Olofsson, Jorgen and Seppa, Heikki}, title = {Quantifying the effects of land use and climate on Holocene vegetation in Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {171}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.001}, pages = {20 -- 37}, year = {2017}, abstract = {Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HeineckeMischkeAdleretal.2017, author = {Heinecke, Liv and Mischke, Steffen and Adler, Karsten and Barth, Anja and Biskaborn, Boris and Plessen, Birgit and Nitze, Ingmar and Kuhn, Gerhard and Rajabov, Ilhomjon and Herzschuh, Ulrike}, title = {Climatic and limnological changes at Lake Karakul (Tajikistan) during the last similar to 29 cal ka}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9980-0}, pages = {317 -- 334}, year = {2017}, abstract = {We present results of analyses on a sediment core from Lake Karakul, located in the eastern Pamir Mountains, Tajikistan. The core spans the last similar to 29 cal ka. We investigated and assessed processes internal and external to the lake to infer changes in past moisture availability. Among the variables used to infer lake-external processes, high values of grain-size end-member (EM) 3 (wide grain-size distribution that reflects fluvial input) and high Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes), are indicative of moister conditions. High values in EM1, EM2 (peaks of small grain sizes that reflect long-distance dust transport or fine, glacially derived clastic input) and TiO2 (terrigenous input) are thought to reflect greater influence of dry air masses, most likely of Westerly origin. High input of dust from distant sources, beginning before the Last Glacial Maximum (LGM) and continuing to the late glacial, reflects the influence of dry Westerlies, whereas peaks in fluvial input suggest increased moisture availability. The early to early-middle Holocene is characterised by coarse mean grain sizes, indicating constant, high fluvial input and moister conditions in the region. A steady increase in terrigenous dust and a decrease in fluvial input from 6.6 cal ka BP onwards points to the Westerlies as the predominant atmospheric circulation through to present, and marks a return to drier and even arid conditions in the area. Proxies for productivity (TOC, TOC/TN, TOCBr), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC, delta(18) OCarb) indicate changes within the lake. Low productivity characterised the lake from the late Pleistocene until 6.6 cal ka BP, and increased rapidly afterwards. Lake level remained low until the LGM, but water depth increased to a maximum during the late glacial and remained high into the early Holocene. Subsequently, the water level decreased to its present stage. Today the lake system is mainly climatically controlled, but the depositional regime is also driven by internal limnogeological processes.}, language = {en} } @article{WieczorekKruseEppetal.2017, author = {Wieczorek, Mareike and Kruse, Stefan and Epp, Laura Saskia and Kolmogorov, Alexei and Nikolaev, Anatoly N. and Heinrich, Ingo and Jeltsch, Florian and Pestryakova, Luidmila Agafyevna and Zibulski, Romy and Herzschuh, Ulrike}, title = {Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study}, series = {Ecology : a publication of the Ecological Society of America}, volume = {98}, journal = {Ecology : a publication of the Ecological Society of America}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.1887}, pages = {2343 -- 2355}, year = {2017}, abstract = {Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.}, language = {en} } @article{RamageIrrgangHerzschuhetal.2017, author = {Ramage, Justine Lucille and Irrgang, Anna Maria and Herzschuh, Ulrike and Morgenstern, Anne and Couture, Nicole and Lantuit, Hugues}, title = {Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004231}, pages = {1619 -- 1634}, year = {2017}, abstract = {Retrogressive thaw slumps (RTSs) are among the most active landforms in the Arctic; their number has increased significantly over the past decades. While processes initiating discrete RTSs are well identified, the major terrain controls on the development of coastal RTSs at a regional scale are not yet defined. Our research reveals the main geomorphic factors that determine the development of RTSs along a 238km segment of the Yukon Coast, Canada. We (1) show the current extent of RTSs, (2) ascertain the factors controlling their activity and initiation, and (3) explain the spatial differences in the density and areal coverage of RTSs. We mapped and classified 287 RTSs using high-resolution satellite images acquired in 2011. We highlighted the main terrain controls over their development using univariate regression trees model. Coastal geomorphology influenced both the activity and initiation of RTSs: active RTSs and RTSs initiated after 1972 occurred primarily on terrains with slope angles greater than 3.9 degrees and 5.9 degrees, respectively. The density and areal coverage of RTSs were constrained by the volume and thickness of massive ice bodies. Differences in rates of coastal change along the coast did not affect the model. We infer that rates of coastal change averaged over a 39year period are unable to reflect the complex relationship between RTSs and coastline dynamics. We emphasize the need for large-scale studies of RTSs to evaluate their impact on the ecosystem and to measure their contribution to the global carbon budget. Plain Language Summary Retrogressive thaw slumps, henceforth slumps are a type of landslides that occur when permafrost thaws. Slumps are active landforms: they develop quickly and extend over several hectares. Satellite imagery allows to map such slumps over large areas. Our research shows where slumps develop along a 238 km segment of the Yukon Coast in Canada and explains which environments are most suitable for slump occurrence. We found that active and newly developed slumps were triggered where coastal slopes were greater than 3.9 degrees and 5.9 degrees, respectively. We explain that coastal erosion influences the development of slumps by modifying coastal slopes. We found that the highest density of slumps as well as the largest slumps occurred on terrains with high amounts of ice bodies in the ground. This study provides tools to better identify areas in the Arctic that are prone to slump development.}, language = {en} } @article{MischkeLaiAichneretal.2017, author = {Mischke, Steffen and Lai, Zhongping and Aichner, Bernhard and Heinecke, Liv and Mahmoudov, Zafar and Kuessner, Marie and Herzschuh, Ulrike}, title = {Radiocarbon and optically stimulated luminescence dating of sediments from Lake Karakul, Tajikistan}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {41}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2017.05.008}, pages = {51 -- 61}, year = {2017}, abstract = {Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23-6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial le, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial interglacial cycle from Central Asia. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{HeineckeEppReschkeetal.2017, author = {Heinecke, Liv and Epp, Laura Saskia and Reschke, Maria and Stoof-Leichsenring, Kathleen Rosemarie and Mischke, Steffen and Plessen, Birgit and Herzschuh, Ulrike}, title = {Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9986-7}, pages = {403 -- 417}, year = {2017}, language = {en} } @article{WolterLantuitHerzschuhetal.2017, author = {Wolter, Juliane and Lantuit, Hugues and Herzschuh, Ulrike and Stettner, Samuel and Fritz, Michael}, title = {Tundra vegetation stability versus lake-basin variability on the Yukon Coastal Plain (NW Canada) during the past three centuries}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {27}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683617708441}, pages = {1846 -- 1858}, year = {2017}, language = {en} } @article{SchirrmeisterMeyerAndreevetal.2016, author = {Schirrmeister, Lutz and Meyer, Hanno and Andreev, Andrei and Wetterich, Sebastian and Kienast, Frank and Bobrov, Anatoly and Fuchs, Margret and Sierralta, Melanie and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.009}, pages = {259 -- 278}, year = {2016}, abstract = {Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS C-14], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [Th-230/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea, Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KlemmHerzschuhPestryakova2016, author = {Klemm, Juliane and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna}, title = {Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.08.015}, pages = {422 -- 434}, year = {2016}, language = {en} } @article{SchneiderWetterichSchirrmeisteretal.2016, author = {Schneider, Andrea and Wetterich, Sebastian and Schirrmeister, Lutz and Herzschuh, Ulrike and Meyer, Hanno and Pestryakova, Luidmila Agafyevna}, title = {Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Society of Exploration Geophysicists}, address = {Abingdon}, issn = {0800-0395}, doi = {10.3402/polar.v35.25225}, pages = {22}, year = {2016}, abstract = {Freshwater ostracods (Crustacea, Ostracoda) are valuable biological indicators. In Arctic environments, their habitat conditions are barely known and the abundance and diversity of ostracods is documented only in scattered records with incomplete ecological characterization. To determine the taxonomic range of ostracod assemblages and their habitat conditions in polygon ponds in the Indigirka Lowland, north-east Siberia, we collected more than 100 living ostracod individuals per site with a plankton net (mesh size 65 mm) and an exhaustor system from 27 water bodies and studied them in the context of substrate and hydrochemical data. During the summer of 2011, a single pond site and its ostracod population was selected for special study. This first record of the ostracod fauna in the Indigirka Lowland comprises eight species and three additional taxa. Fabaeformiscandona krochini and F. groenlandica were documented for the first time in continental Siberia. Repeated sampling of a low-centre polygon pond yielded insights into the population dynamics of F. pedata. We identified air temperature and precipitation as the main external drivers of water temperatures, water levels, ion concentrations and water stable isotope composition on diurnal and seasonal scales.}, language = {en} } @article{HerzschuhBirksLaeppleetal.2016, author = {Herzschuh, Ulrike and Birks, H. John B. and Laepple, Thomas and Andreev, Andrei and Melles, Martin and Brigham-Grette, Julie}, title = {Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms11967}, pages = {11}, year = {2016}, abstract = {Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial-interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation-climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2-temperature relationships may thus yield misleading simulations of past global climate sensitivity.}, language = {en} } @article{ZibulskiHerzschuhPestryakova2016, author = {Zibulski, Romy and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna}, title = {Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic}, series = {Journal of vegetation science}, volume = {27}, journal = {Journal of vegetation science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12356}, pages = {377 -- 386}, year = {2016}, abstract = {QuestionHow important is the effect of micro-relief and vegetation type on the characteristics of vascular plants and bryophytes in low-centred polygons? LocationSiberian Arctic, Russia. MethodsEight low-centred polygons in northern Siberia were surveyed for vegetation along transects running from the rim to the pond via the rim-pond transition of each polygon and across a vegetation type gradient from open forest to tundra. ResultsThe cover of vascular plants and bryophytes displays no significant differences between the rim and rim-pond transition but is significantly lower in the pond section of the polygons. Alpha-diversity of vascular plants decreases strongly from rim to pond, whereas bryophyte diversity in pond plots is significantly distinct from the rim and the rim-pond transition. There is no clear trend in cover for either plant group along the vegetation type transect and only a weak trend in -diversity. However, both gradients are reflected in the compositional turnover. The applied indicator species analysis identified taxa characteristic of certain environmental conditions. Among others, we found vascular plants primarily characteristic of the rim and bryophyte taxa characteristic of each micro-relief level and vegetation type. ConclusionsThe observed gradual pattern in -diversity and composition of polygonal vegetation suggests that micro-relief is the main driver of changes in the vegetation composition, while vegetation type and the related forest cover change are of subordinate importance for polygonal vegetation patterns along the Siberian tree line.}, language = {en} } @article{LiLiuHerzschuhetal.2016, author = {Li, Kai and Liu, Xingqi and Herzschuh, Ulrike and Wang, Yongbo}, title = {Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep24806}, pages = {9}, year = {2016}, abstract = {Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium.}, language = {en} } @article{StoofLeichsenringHuangLiuetal.2022, author = {Stoof-Leichsenring, Kathleen R. and Huang, Sichao and Liu, Sisi and Jia, Weihan and Li, Kai and Liu, Xingqi and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high-latitude and high-elevation lakes in Siberia and China}, series = {Limnology and oceanography}, volume = {67}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0024-3590}, doi = {10.1002/lno.12061}, pages = {1126 -- 1141}, year = {2022}, abstract = {Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long-term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface-sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface-sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12 degrees C and conductivity ranges between 40 and 400 mu S cm(-1). Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late-glacial and Mid-Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake-hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.}, language = {en} } @article{HerzschuhWinterWuennemannetal.2006, author = {Herzschuh, Ulrike and Winter, Katja and W{\"u}nnemann, Bernd and Li, Shijie}, title = {A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {154}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Pergamon Press}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2006.02.005}, pages = {113 -- 121}, year = {2006}, abstract = {A 741-cm-long laminated sediment core, covering the last 10,800 years was collected from Lake Zigetang, central Tibetan Plateau (90.9 degrees E, 32.0 degrees N, 4560m a.s.l.), and analysed palynologically at 69 horizons. Biome reconstruction suggests a dominance of temperate steppe vegetation (mainly Artemisia and Poaceae) on the central Tibetan Plateau during the first half of the Holocene (10.8-4.4 cal. ka BP), while alpine steppes with desert elements (mainly Cyperaceae, Poaceae, Chenopodiaceae, and characteristic high-alpine herb families) tend to dominate the second half (4.4-0 cal. ka BP). The Artemisia/Cyperaceae ratio-a semi-quantitative measure for summer temperature-indicates a general cooling trend throughout the Holocene. Dense temperate steppe vegetation and maximum desert plant withdrawal, however, indicate that a suitable balance of wet and warm conditions for optimum vegetation growth likely occurred during the middle Holocene (7.3-4.4 cal. ka BP). Severe Early Holocene cold events have been reconstructed for 8.7-8.3 and similar to 7.4 cal. ka BP. (c) 2006 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{StraussSchirrmeisterMangelsdorfetal.2015, author = {Strauss, Jens and Schirrmeister, Lutz and Mangelsdorf, Kai and Eichhorn, L. and Wetterich, Sebastian and Herzschuh, Ulrike}, title = {Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia}, series = {Biogeosciences}, volume = {12}, journal = {Biogeosciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-12-2227-2015}, pages = {2227 -- 2245}, year = {2015}, abstract = {The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and delta C-13 values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly over-lap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter vulnerability is heterogeneous and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the major new contributions of our multiproxy study. With the addition of biomarker data, it was possible to show that permafrost organic-matter degradation likely occurs via a combination of (uncompleted) degradation cycles or a cascade of degradation steps rather than as a linear function of age or sediment facies. We conclude that the amount of organic matter in the studied sediments is high for mineral soils and of good quality and therefore susceptible to future decomposition. The lack of depth trends shows that permafrost acts like a giant freezer, preserving the constant quality of ancient organic matter. When undecomposed Yedoma organic matter is mobilized via thermokarst processes, the fate of this carbon depends largely on the environmental conditions; the carbon could be preserved in an undecomposed state till refreezing occurs. If modern input has occurred, thermokarst organic matter could be of a better quality for future microbial decomposition than that found in Yedoma deposits.}, language = {en} } @article{AichnerFeakinsLeeetal.2015, author = {Aichner, Bernhard and Feakins, Sarah J. and Lee, J. E. and Herzschuh, Ulrike and Liu, X.}, title = {High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-11-619-2015}, pages = {619 -- 633}, year = {2015}, abstract = {Central Asia is located at the confluence of large-scale atmospheric circulation systems. It is thus likely to be highly susceptible to changes in the dynamics of those systems; however, little is still known about the regional paleoclimate history. Here we present carbon and hydrogen isotopic compositions of n-alkanoic acids from a late Holocene sediment core from Lake Karakuli (eastern Pamir, Xinjiang Province, China). Instrumental evidence and isotopeenabled climate model experiments with the Laboratoire de Meteorologie Dynamique Zoom model version 4 (LMDZ4) demonstrate that delta D values of precipitation in the region are influenced by both temperature and precipitation amount. We find that these parameters are inversely correlated on an annual scale, i.e., the climate has varied between relatively cool and wet and more warm and dry over the last 50 years. Since the isotopic signals of these changes are in the same direction and therefore additive, isotopes in precipitation are sensitive recorders of climatic changes in the region. Additionally, we infer that plants use year-round precipitation (including snowmelt), and thus leaf wax delta D values must also respond to shifts in the proportion of moisture derived from westerly storms during late winter and early spring. Downcore results give evidence for a gradual shift to cooler and wetter climates between 3.5 and 2.5 cal kyr BP, interrupted by a warm and dry episode between 3.0 and 2.7 kyr BP. Further cool and wet episodes occur between 1.9 and 1.5 and between 0.6 and 0.1 kyr BP, the latter coeval with the Little Ice Age. Warm and dry episodes from 2.5 to 1.9 and 1.5 to 0.6 kyr BP coincide with the Roman Warm Period and Medieval Climate Anomaly, respectively. Finally, we find a drying tend in recent decades. Regional comparisons lead us to infer that the strength and position of the westerlies, and wider northern hemispheric climate dynamics, control climatic shifts in arid Central Asia, leading to complex local responses. Our new archive from Lake Karakuli provides a detailed record of the local signatures of these climate transitions in the eastern Pamir.}, language = {en} } @article{DallmeyerClaussenFischeretal.2015, author = {Dallmeyer, A. and Claussen, M. and Fischer, N. and Haberkorn, K. and Wagner, S. and Pfeiffer, M. and Jin, L. and Khon, V. and Wang, Y. and Herzschuh, Ulrike}, title = {The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-11-305-2015}, pages = {305 -- 326}, year = {2015}, abstract = {The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i. e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.}, language = {en} } @article{NiemeyerHerzschuhPestryakova2015, author = {Niemeyer, Bastian and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna}, title = {Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {25}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {4}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614565954}, pages = {596 -- 606}, year = {2015}, abstract = {Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a Pb-210/Cs-137 dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change. We compared the pollen record with Pediastrum species, which we consider to be important proxies of climate changes. Three pollen assemblage zones characterised by Betula nana, Alnus viridis and Larix gmelinii (1706-1808); herbs such as Cyperaceae, Artemisia or Senecio (1808-1879), and higher abundance of Larix pollen (1955-2011) are visible. Also, three Pediastrum assemblage zones show changes of aquatic conditions: higher abundances of Pediastrum boryanum var. brevicorne (1706-1802); medium abundances of P. kawraiskyi and P. integrum (1802-1840 and 1920-1980), indicating cooler conditions while less eutrophic conditions are indicated by P. boryanum, and a mainly balanced composition with only small changes of cold- and warm-adapted Pediastrum species (1965-2011). In general, compositional Pediastrum species turnover is slightly higher than that indicated by pollen data (0.54 vs 0.34 SD), but both are only minor for this treeline location. In conclusion, the relevance of differentiation of Pediastrum species is promising and can give further insights into the relationship between lakes and their surrounding vegetation transferred onto climatic conditions.}, language = {en} } @article{ZimmermannHarmsEppetal.2019, author = {Zimmermann, Heike Hildegard and Harms, Lars and Epp, Laura Saskia and Mewes, Nick and Bernhardt, Nadine and Kruse, Stefan and Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Wieczorek, Mareike and Trense, Daronja and Herzschuh, Ulrike}, title = {Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216966}, pages = {21}, year = {2019}, abstract = {Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/ L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.}, language = {en} } @article{CaoTianLietal.2019, author = {Cao, Xianyong and Tian, Fang and Li, Furong and Gaillard, Marie-Jose and Rudaya, Natalia and Xu, Qinghai and Herzschuh, Ulrike}, title = {Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-15-1503-2019}, pages = {1503 -- 1536}, year = {2019}, abstract = {We collected the available relative pollen productivity estimates (PPEs) for 27 major pollen taxa from Eurasia and applied them to estimate plant abundances during the last 40 ka cal BP (calibrated thousand years before present) using pollen counts from 203 fossil pollen records in northern Asia (north of 40 degrees N). These pollen records were organized into 42 site groups and regional mean plant abundances calculated using the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. Time-series clustering, constrained hierarchical clustering, and detrended canonical correspondence analysis were performed to investigate the regional pattern, time, and strength of vegetation changes, respectively. Reconstructed regional plant functional type (PFT) components for each site group are generally consistent with modern vegetation in that vegetation changes within the regions are characterized by minor changes in the abundance of PFTs rather than by an increase in new PFTs, particularly during the Holocene. We argue that pollen-based REVEALS estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer invades areas dominated by low pollen producers. Comparisons with vegetation-independent climate records show that climate change is the primary factor driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct climate change, e.g. inland Siberia, where a sharp increase in evergreen conifer tree abundance occurred at ca. 7-8 ka cal BP despite an unchanging climate, potentially reflecting their response to complex climate-permafrost-fire-vegetation interactions and thus a possible long-term lagged climate response.}, language = {en} } @article{CaoTianDallmeyeretal.2019, author = {Cao, Xianyong and Tian, Fang and Dallmeyer, Anne and Herzschuh, Ulrike}, title = {Northern Hemisphere biome changes (> 30 degrees N) since 40 cal ka BP and their driving factors inferred from model-data comparisons}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {220}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.07.034}, pages = {291 -- 309}, year = {2019}, abstract = {Ongoing and past biome transitions are generally assigned to climate and atmospheric changes (e.g. temperature, precipitation, CO2), but the major regional factors or factor combinations that drive vegetation change often remain unknown. Modelling studies applying ensemble runs can help to partition the effects of the different drivers. Such studies require careful validation with observational data. In this study, fossil pollen records from 741 sites in Europe, 728 sites in North America, and 418 sites in Asia (extracted from terrestrial archives including lake sediments) are used to reconstruct biomes at selected time slices between 40 cal ka BP (calibrated thousand years before present) and today. These results are used to validate Northern Hemisphere biome distributions (>30 degrees N) simulated by the biome model BIOME4 that has been forced with climate data simulated by a General Circulation model. Quantitative comparisons between pollen- and model-based results show a generally good fit at a broad spatial scale. Mismatches occur in central-arid Asia with a broader extent of grassland throughout the last 40 ka (likely due to the over-representation of Artemisia and Chenopodiaceae pollen) and in Europe with over-estimation of tundra at 0 cal ka BP (likely due to human impacts to some extent). Sensitivity analysis reveals that broad-scale biome changes follow the global signal of major postglacial temperature change, although the climatic variables vary in their regional and temporal importance. Temperature is the dominant variable in Europe and other rather maritime areas for biome changes between 21 and 14 ka, while precipitation is highly important in the arid inland regions of Asia and North America. The ecophysiological effect of changes in the atmospheric CO2-concentration has the highest impact during this transition than in other intervals. With respect to modern vegetation in the course of global warming, our findings imply that vegetation change in the Northern Hemisphere may be strongly limited by effective moisture changes, i.e. the combined effect of temperature and precipitation, particularly in inland areas. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KruseGerdesKathetal.2019, author = {Kruse, Stefan and Gerdes, Alexander and Kath, Nadja J. and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Dispersal distances and migration rates at the arctic treeline in Siberia - a genetic and simulation-based study}, series = {Biogeosciences}, volume = {16}, journal = {Biogeosciences}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-16-1211-2019}, pages = {1211 -- 1224}, year = {2019}, abstract = {A strong temperature increase in the Arctic is expected to lead to latitudinal treeline shift. This tundra-taiga turnover would cause a positive vegetation-climate feedback due to albedo decrease. However, reliable estimates of tree migration rates are currently lacking due to the complex processes involved in forest establishment, which depend strongly on seed dispersal. We aim to fill this gap using LAVESI, an individual-based and spatially explicit Larix vegetation simulator. LAVESI was designed to simulate plots within homogeneous forests. Here, we improve the implementation of the seed dispersal function via field-based investigations. We inferred the effective seed dispersal distances of a typical open-forest stand on the southern Taymyr Peninsula (northern central Siberia) from genetic parentage analysis using eight nuclear microsatellite markers. The parentage analysis gives effective seed dispersal distances (median similar to 10 m) close to the seed parents. A comparison between simulated and observed effective seed dispersal distances reveals an overestimation of recruits close to the releasing tree and a shorter dispersal distance generally. We thus adapted our model and used the newly parameterised version to simulate south-to-north transects; a slow-moving treeline front was revealed. The colonisation of the tundra areas was assisted by occasional long-distance seed dispersal events beyond the treeline area. The treeline (similar to 1 tree ha(-1)) advanced by similar to 1.6 m yr(-1), whereas the forest line (similar to 100 trees ha(-1)) advanced by only similar to 0.6 m yr(-1). We conclude that the treeline in northern central Siberia currently lags behind the current strong warming and will continue to lag in the near future.}, language = {en} } @article{HeineckeFletcherMischkeetal.2018, author = {Heinecke, Liv and Fletcher, W. J. and Mischke, Steffen and Tian, Fang and Herzschuh, Ulrike}, title = {Vegetation change in the eastern Pamir Mountains, Tajikistan, inferred from Lake Karakul pollen spectra of the last 28 kyr}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {511}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.08.010}, pages = {232 -- 242}, year = {2018}, abstract = {We present a pollen record for last 28 cal kyr BP from the eastern basin of Lake Karakul, the largest lake in Tajikistan, located in the eastern Pamir Mountains at 3915 m asl, a geographically complex region. The pollen record is dominated by Artemisia and Chenopodiaceae, while other taxa, apart from Poaceae, are present in low quantities and rarely exceed 5\% in total. Arboreal pollen occur predominantly from similar to 28 to similar to 13 cal kyr BP, but as likely no trees occurred in the high mountain regions of the eastern Pamir during this time due to the high altitude and cold climate, arboreal taxa are attributed to long distance transport, probably by the Westerlies, the dominant atmospheric circulation. Tree pollen influx decreases strongly after similar to 13 cal kyr BP, allowing the pollen spectra to be interpreted as a regional vegetation signal. We infer that from 27.6 to 19.4 cal kyr BP the eastern Pamir was dominated by dry mountain steppe with low vegetation cover, while from 19.0 to 13.6 cal kyr BP Artemisia values increase and Chenopodiaceae, most herb taxa, and inferred far distant input from arboreal taxa decrease. Between 12.9 and 6.7 cal kyr BP open steppe vegetation dominated with maximum values in Ephedra, and while steppe taxa still dominated the spectra from 5.4 to 1 cal kyr BP, meadow taxa start to increase. During the last millennium, alpine steppe and alpine meadows expanded and a weak human influence can be ascertained from the increase of Asteraceae and the occurrence of Plantago pollen in the spectra.}, language = {en} } @article{BriegerHerzschuhPestryakovaetal.2019, author = {Brieger, Frederic and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Bookhagen, Bodo and Zakharov, Evgenii S. and Kruse, Stefan}, title = {Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds}, series = {Remote sensing}, volume = {11}, journal = {Remote sensing}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11121447}, pages = {24}, year = {2019}, abstract = {Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra-taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1\% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE\%) for tree heights (mean R2 = 0.77, mean RMSE\% = 18.46\%) than for crown diameters (mean R2 = 0.46, mean RMSE\% = 24.9\%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra-taiga ecotone should be adapted to the forest structure and have a radius of >15-20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest's stand structure.}, language = {en} } @article{DallmeyerClaussenNietal.2017, author = {Dallmeyer, Anne and Claussen, Martin and Ni, Jian and Cao, Xianyong and Wang, Yongbo and Fischer, Nils and Pfeiffer, Madlene and Jin, Liya and Khon, Vyacheslav and Wagner, Sebastian and Haberkorn, Kerstin and Herzschuh, Ulrike}, title = {Biome changes in Asia since the mid-Holocene}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-107-2017}, pages = {107 -- 134}, year = {2017}, abstract = {The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21\% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.}, language = {en} } @article{TianCaoDallmeyeretal.2017, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Zhao, Yan and Ni, Jian and Herzschuh, Ulrike}, title = {Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {156}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.11.027}, pages = {1 -- 11}, year = {2017}, abstract = {Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.}, language = {en} } @article{StoofLeichsenringHerzschuhPestryakovaetal.2015, author = {Stoof-Leichsenring, Kathleen Rosemarie and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Klemm, Juliane and Epp, Laura Saskia and Tiedemann, Ralph}, title = {Genetic data from algae sedimentary DNA reflect the influence of environment over geography}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep12924}, pages = {11}, year = {2015}, abstract = {Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.}, language = {en} } @article{HebertHerzschuhLaepple2022, author = {H{\´e}bert, Rapha{\"e}l and Herzschuh, Ulrike and Laepple, Thomas}, title = {Millennial-scale climate variability over land overprinted by ocean temperature fluctuations}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {11}, publisher = {Nature portfolio}, address = {Berlin}, issn = {1752-0894}, doi = {10.1038/s41561-022-01056-4}, pages = {899}, year = {2022}, abstract = {Variations in regional temperature have widespread implications for society, but our understanding of the amplitude and origin of long-term natural variability is insufficient for accurate regional projections. This is especially the case for terrestrial temperature variability, which is currently thought to be weak over long timescales. By performing spectral analysis on climate reconstructions, produced using sedimentary pollen records from the Northern Hemisphere over the last 8,000 years, coupled with instrumental data, we provide a comprehensive estimate of regional temperature variability from annual to millennial timescales. We show that short-term random variations are overprinted by strong ocean-driven climate variability on multi-decadal and longer timescales. This may cause substantial and potentially unpredictable regional climatic shifts in the coming century, in contrast to the relatively muted and homogeneous warming projected by climate models. Due to the marine influence, regions characterized by stable oceanic climate at sub-decadal timescales experience stronger long-term variability, and continental regions with higher sub-decadal variability show weaker long-term variability. This fundamental relationship between the timescales provides a unique insight into the emergence of a marine-driven low-frequency regime governing terrestrial climate variability and sets the basis to project the amplitude of temperature fluctuations on multi-decadal timescales and longer. Temperature variability over land is enhanced by ocean temperature fluctuations on millennial timescales, with implications for regional-scale climate change, according to an analysis of Northern Hemisphere proxy records and observations.}, language = {en} } @article{TianQinZhangetal.2022, author = {Tian, Fang and Qin, Wen and Zhang, Ran and Herzschuh, Ulrike and Ni, Jian and Zhang, Chengjun and Mischke, Steffen and Cao, Xianyong}, title = {Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years}, series = {Vegetation history and archaeobotany}, volume = {31}, journal = {Vegetation history and archaeobotany}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-022-00870-5}, pages = {549 -- 558}, year = {2022}, abstract = {The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components-Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae-are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal.}, language = {en} } @article{vanGeffenHeimBriegeretal.2022, author = {van Geffen, Femke and Heim, Birgit and Brieger, Frederic and Geng, Rongwei and Shevtsova, Iuliia and Schulte, Luise and Stuenzi, Simone M. and Bernhardt, Nadine and Troeva, Elena I. and Pestryakova, Luidmila Agafyevna and Zakharov, Evgenii S. and Pflug, Bringfried and Herzschuh, Ulrike and Kruse, Stefan}, title = {SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches}, series = {Earth system science data}, volume = {14}, journal = {Earth system science data}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-4967-2022}, pages = {4967 -- 4994}, year = {2022}, abstract = {The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen-evergreen transition zone in Central Yakutia and the tundra-taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, ). The dataset includes structure-from-motion (SfM) point clouds and red-green-blue (RGB) and red-green-near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, ). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch ( and ) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, ). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species. Larix gmeliniiLarix cajanderiDataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, ). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities.
The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra-taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{DietzeMangelsdorfAndreevetal.2020, author = {Dietze, Elisabeth and Mangelsdorf, Kai and Andreev, Andrei and Karger, Cornelia and Schreuder, Laura T. and Hopmans, Ellen C. and Rach, Oliver and Sachse, Dirk and Wennrich, Volker and Herzschuh, Ulrike}, title = {Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments}, series = {Climate of the Past}, volume = {16}, journal = {Climate of the Past}, number = {2}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1814-9332}, doi = {10.5194/cp-16-799-2020}, pages = {788 -- 818}, year = {2020}, abstract = {Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes.}, language = {en} } @article{MiesnerHerzschuhPestryakovaetal.2022, author = {Miesner, Timon and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Wieczorek, Mareike and Zakharov, Evgenii S. and Kolmogorov, Alexei I. and Davydova, Paraskovya V. and Kruse, Stefan}, title = {Forest structure and individual tree inventories of northeastern Siberia along climatic gradients}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {12}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-5695-2022}, pages = {5695 -- 5716}, year = {2022}, abstract = {We compile a data set of forest surveys from expeditions to the northeast of the Russian Federation, in Krasnoyarsk Krai, the Republic of Sakha (Yakutia), and the Chukotka Autonomous Okrug (59-73 degrees N, 97-169 degrees E), performed between the years 2011 and 2021. The region is characterized by permafrost soils and forests dominated by larch (Larix gmelinii Rupr. and Larix cajanderi Mayr). Our data set consists of a plot database describing 226 georeferenced vegetation survey plots and a tree database with information about all the trees on these plots. The tree database, consisting of two tables with the same column names, contains information on the height, species, and vitality of 40 289 trees. A subset of the trees was subject to a more detailed inventory, which recorded the stem diameter at base and at breast height, crown diameter, and height of the beginning of the crown. We recorded heights up to 28.5 m (median 2.5 m) and stand densities up to 120 000 trees per hectare (median 1197 ha(-1)), with both values tending to be higher in the more southerly areas. Observed taxa include Larix Mill., Pinus L., Picea A. Dietr., Abies Mill., Salix L., Betula L., Populus L., Alnus Mill., and Ulmus L. In this study, we present the forest inventory data aggregated per plot. Additionally, we connect the data with different remote sensing data products to find out how accurately forest structure can be predicted from such products. Allometries were calculated to obtain the diameter from height measurements for every species group. For Larix, the most frequent of 10 species groups, allometries depended also on the stand density, as denser stands are characterized by thinner trees, relative to height. The remote sensing products used to compare against the inventory data include climate, forest biomass, canopy height, and forest loss or disturbance. We find that the forest metrics measured in the field can only be reconstructed from the remote sensing data to a limited extent, as they depend on local properties. This illustrates the need for ground inventories like those data we present here. The data can be used for studying the forest structure of northeastern Siberia and for the calibration and validation of remotely sensed data.}, language = {en} } @article{KruseStuenziBoikeetal.2022, author = {Kruse, Stefan and St{\"u}nzi, Simone Maria and Boike, Julia and Langer, Moritz and Gloy, Josias and Herzschuh, Ulrike}, title = {Novel coupled permafrost-forest model (LAVESI-CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia}, series = {Geoscientific model development : GMD ; an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Geoscientific model development : GMD ; an interactive open access journal of the European Geosciences Union}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-15-2395-2022}, pages = {2395 -- 2422}, year = {2022}, abstract = {Boreal forests of Siberia play a relevant role in the global carbon cycle. However, global warming threatens the existence of summergreen larch-dominated ecosystems, likely enabling a transition to evergreen tree taxa with deeper active layers. Complex permafrost-vegetation interactions make it uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. Consequently, shedding light on the role of current and future active layer dynamics and the feedbacks with the apparent tree species is crucial to predict boreal forest transition dynamics and thus for aboveground forest biomass and carbon stock developments. Hence, we established a coupled model version amalgamating a one-dimensional permafrost multilayer forest land-surface model (CryoGrid) with LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.), extended for this study by including other relevant Siberian forest species and explicit terrain.
Following parameterization, we ran simulations with the coupled version to the near future to 2030 with a mild climate-warming scenario. We focus on three regions covering a gradient of summergreen forests in the east at Spasskaya Pad, mixed summergreen-evergreen forests close to Nyurba, and the warmest area at Lake Khamra in the southeast of Yakutia, Russia. Coupled simulations were run with the newly implemented boreal forest species and compared to runs allowing only one species at a time, as well as to simulations using just LAVESI. Results reveal that the coupled version corrects for overestimation of active layer thickness (ALT) and soil moisture, and large differences in established forests are simulated. We conclude that the coupled version can simulate the complex environment of eastern Siberia by reproducing vegetation patterns, making it an excellent tool to disentangle processes driving boreal forest dynamics.}, language = {en} } @article{SchulteLiLisovskietal.2022, author = {Schulte, Luise and Li, Chenzhi and Lisovski, Simeon and Herzschuh, Ulrike}, title = {Forest-permafrost feedbacks and glacial refugia help explain the unequal distribution of larch across continents}, series = {Journal of biogeography}, volume = {49}, journal = {Journal of biogeography}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.14456}, pages = {1825 -- 1838}, year = {2022}, abstract = {Aim: The continental-scale distribution of plant functional types, such as evergreen and summergreen needle-leaf forest, is assumed to be determined by contemporary climate. However, the distribution of summergreen needle-leaf forest of larch (Larix Mill.) differs markedly between the continents, despite relatively similar climatic conditions. The reasons for these differences are little understood. Our aim is to identify potential triggers and drivers of the current distribution patterns by comparing species' bioclimatic niches, glacial refugia and postglacial recolonization patterns. Location: Northern hemisphere. Taxon: Species of the genus Larix (Mill.). Methods: We compare species distribution and dominance using species ranges and sites of dominance, as well as their occurrence on modelled permafrost extent, and active layer thickness (ALT). We compare the bioclimatic niches and calculate the niche overlap between species, using the same data in addition to modern climate data. We synthesize pollen, macrofossil and ancient DNA palaeo-evidence of past Larix occurrences of the last 60,000 years and track differences in distribution patterns through time. Results: Bioclimatic niches show large overlaps between Asian larch species and American Larix laricina. The distribution across various degrees of permafrost extent is distinctly different for Asian L. gmelinii and L. cajanderi compared to the other species, whereas the distribution on different depths of ALT is more similar among Asian and American species. Northern glacial refugia for Larix are only present in eastern Asia and Alaska. Main Conclusion: The dominance of summergreen larches in Asia, where evergreen conifers dominate most of the rest of the boreal forests, is dependent on the interaction of several factors which allows Asian L. gmelinii and L. cajanderi to dominate where these factors coincide. These factors include the early postglacial spread out of northern glacial refugia in the absence of competitors as well as a positive feedback mechanism between frozen ground and forest.}, language = {en} } @article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} } @article{DallmeyerKleinenClaussenetal.2022, author = {Dallmeyer, Anne and Kleinen, Thomas and Claussen, Martin and Weitzel, Nils and Cao, Xianyong and Herzschuh, Ulrike}, title = {The deglacial forest conundrum}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {[London]}, issn = {2041-1723}, doi = {10.1038/s41467-022-33646-6}, pages = {10}, year = {2022}, abstract = {How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict.
Deglacial forest expansion in the Northern Hemisphere poses a conundrum: Model results agree with the climate signal but are several millennia ahead of reconstructed forest dynamics. The underlying causes remain unsolved.}, language = {en} } @article{HerzschuhBoehmerLietal.2022, author = {Herzschuh, Ulrike and B{\"o}hmer, Thomas and Li, Chenzhi and Cao, Xianyong and H{\´e}bert, Rapha{\"e}l and Dallmeyer, Anne and Telford, Richard J. and Kruse, Stefan}, title = {Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2022GL099730}, pages = {11}, year = {2022}, abstract = {Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.}, language = {en} } @article{KruseHerzschuh2022, author = {Kruse, Stefan and Herzschuh, Ulrike}, title = {Regional opportunities for tundra conservation in the next 1000 years}, series = {eLife}, volume = {11}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.75163}, pages = {24}, year = {2022}, abstract = {The biodiversity of tundra areas in northern high latitudes is threatened by invasion of forests under global warming. However, poorly understood nonlinear responses of the treeline ecotone mean the timing and extent of tundra losses are unclear, but policymakers need such information to optimize conservation efforts. Our individual-based model LAVESI, developed for the Siberian tundra-taiga ecotone, can help improve our understanding. Consequently, we simulated treeline migration trajectories until the end of the millennium, causing a loss of tundra area when advancing north. Our simulations reveal that the treeline follows climate warming with a severe, century-long time lag, which is overcompensated by infilling of stands in the long run even when temperatures cool again. Our simulations reveal that only under ambitious mitigation strategies (relative concentration pathway 2.6) will ~30\% of original tundra areas remain in the north but separated into two disjunct refugia.}, language = {en} } @article{ZhangCaoXuetal.2022, author = {Zhang, Naimeng and Cao, Xianyong and Xu, Qinghai and Huang, Xiaozhong and Herzschuh, Ulrike and Shen, Zhongwei and Peng, Wei and Liu, Sisi and Wu, Duo and Wang, Jian and Xia, Huan and Zhang, Dongju and Chen, Fahu}, title = {Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation}, series = {Catena}, volume = {210}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2021.105892}, pages = {14}, year = {2022}, abstract = {The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the late glacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3-13.1 kyr BP and 9-6.4 kyr BP) changed from shrub-steppe to coniferous forest-steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during 9.0-6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.}, language = {en} } @article{AndreevRaschkeBiskabornetal.2021, author = {Andreev, Andrei and Raschke, Elena and Biskaborn, Boris and Vyse, Stuart Andrew and Courtin, J{\´e}r{\´e}my and B{\"o}hmer, Thomas and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and Rauchuagytgyn pollen records}, series = {Boreas : an international journal of quaternary research}, volume = {50}, journal = {Boreas : an international journal of quaternary research}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0300-9483}, doi = {10.1111/bor.12521}, pages = {652 -- 670}, year = {2021}, abstract = {This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae similar to 16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared similar to 15.9 cal. ka BP, and became dominant after similar to 15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after similar to 13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum similar to 11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant similar to 11.8-11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between similar to 10.6 and 7 cal. ka BP. Vegetation became similar to the modern after similar to 7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.}, language = {en} } @article{LiPostlBoehmeretal.2022, author = {Li, Chenzhi and Postl, Alexander K. and B{\"o}hmer, Thomas and Cao, Xianyong and Dolman, Andrew M. and Herzschuh, Ulrike}, title = {Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {3}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-14-1331-2022}, pages = {1331 -- 1343}, year = {2022}, abstract = {We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 \%), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8\% of records), reservoir effect (4.9 \%), and sediment deposition discontinuity (4.4 \%). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4\% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively.}, language = {en} } @article{CourtinAndreevRaschkeetal.2021, author = {Courtin, J{\´e}r{\´e}my and Andreev, Andrei and Raschke, Elena and Bala, Sarah and Biskaborn, Boris and Liu, Sisi and Zimmermann, Heike and Diekmann, Bernhard and Stoof-Leichsenring, Kathleen R. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.625096}, pages = {18}, year = {2021}, abstract = {Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene.}, language = {en} } @article{HeimLisovskiWieczoreketal.2022, author = {Heim, Birgit and Lisovski, Simeon and Wieczorek, Mareike and Morgenstern, Anne and Juhls, Bennet and Shevtsova, Iuliia and Kruse, Stefan and Boike, Julia and Fedorova, Irina and Herzschuh, Ulrike}, title = {Spring snow cover duration and tundra greenness in the Lena Delta, Siberia}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac8066}, pages = {18}, year = {2022}, abstract = {The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The 'regular year' snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 degrees C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{AndreevNazarovaLenzetal.2022, author = {Andreev, Andrei and Nazarova, Larisa B. and Lenz, Marlene M. and B{\"o}hmer, Thomas and Syrykh, Ludmila and Wagner, Bernd and Melles, Martin and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia)}, series = {Journal of quaternary science : JQS}, volume = {37}, journal = {Journal of quaternary science : JQS}, number = {5}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0267-8179}, doi = {10.1002/jqs.3419}, pages = {884 -- 899}, year = {2022}, abstract = {Continuous pollen and chironomid records from Lake Emanda (65 degrees 17'N, 135 degrees 45'E) provide new insights into the Late Quaternary environmental history of the Yana Highlands (Yakutia). Larch forest with shrubs (alders, pines, birches) dominated during the deposition of the lowermost sediments suggesting its Early Weichselian [Marine Isotope Stage (MIS) 5] age. Pollen- and chironomid-based climate reconstructions suggest July temperatures (T-July) slightly lower than modern. Gradually increasing amounts of herb pollen and cold stenotherm chironomid head capsules reflect cooler and drier environments, probably during the termination of MIS 5. T-July dropped to 8 degrees C. Mostly treeless vegetation is reconstructed during MIS 3. Tundra and steppe communities dominated during MIS 2. Shrubs became common after similar to 14.5 ka BP but herb-dominated habitats remained until the onset of the Holocene. Larch forests with shrub alder and dwarf birch dominated after the Holocene onset, ca. 11.7 ka BP. Decreasing amounts of shrub pollen during the Lateglacial are assigned to the Older Dryas and Younger Dryas with T-July similar to 7.5 degrees C. T-July increased up to 13 degrees C. Shrub stone pine was present after similar to 7.5 ka BP. The vegetation has been similar to modern since ca. 5.8 ka BP. Chironomid diversity and concentration in the sediments increased towards the present day, indicating the development of richer hydrobiological communities in response to the Holocene thermal maximum.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{GluecklerHerzschuhKruseetal.2021, author = {Gl{\"u}ckler, Ramesh and Herzschuh, Ulrike and Kruse, Stefan and Andreev, Andrei and Vyse, Stuart Andrew and Winkler, Bettina and Biskaborn, Boris and Pestryakova, Luidmila Agafyevna and Dietze, Elisabeth}, title = {Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record}, series = {Biogeosciences : BG / European Geosciences Union}, volume = {18}, journal = {Biogeosciences : BG / European Geosciences Union}, number = {13}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-4185-2021}, pages = {4185 -- 4209}, year = {2021}, abstract = {Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression.}, language = {en} } @article{GluecklerGengGrimmetal.2022, author = {Gl{\"u}ckler, Ramesh and Geng, Rongwei and Grimm, Lennart and Baisheva, Izabella and Herzschuh, Ulrike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Andreev, Andrej Aleksandrovic and Pestryakova, Luidmila and Dietze, Elisabeth}, title = {Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.962906}, pages = {19}, year = {2022}, abstract = {Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.}, language = {en} } @misc{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52515}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525154}, pages = {18}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 \% of our sequences being assigned to diatoms across 18 different families, with 38.6 \% of them being resolved to species and 25.8 \% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 \% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{NiCaoJeltschetal.2014, author = {Ni, Jian and Cao, Xianyong and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Biome distribution over the last 22,000 yr in China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {409}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.04.023}, pages = {33 -- 47}, year = {2014}, abstract = {Patterns of past vegetation changes over time and space can help facilitate better understanding of the interactions among climate, ecosystem, and human impact. Biome changes in China over the last 22,000 yr (calibrated radiocarbon date, a BP) were numerically reconstructed by using a standard approach of pollen-plant functional type-biome assignment (biomization). The biomization procedure involves pollen data from 2434 surface sites and 228 fossil sites with a high quality of pollen count and C-14 dating, 51 natural and three anthropogenic plant functional types (PFTs), as well as 19 natural and one anthropogenic biome. Surface pollen-based reconstruction of modern natural biome patterns is in good agreement (74.4\%) with actual vegetation distribution in China. However, modem large-scale anthropogenic biome reconstruction has not been successful based on the current setup of three anthropogenic PFTs (plantation, secondary, and disturbed PFT) because of the limitation of non-species level pollen identification and the difficulty in the clear assignment of disturbed PFTs. The non-anthropogenic biome distributions of 44 time slices at 500-year intervals show large-scale discrepant and changed vegetation patterns from the last glacial maximum (LGM) to the Holocene throughout China. From 22 ka BP to 19 ka BP, temperate grassland, xerophytic shrubland, and desert dominated northern China, whereas cold or cool forests flourished in central China. Warm-temperate evergreen forests were restricted to far southern China, and tropical forests were absent During 18.5 ka BP to 12 ka BP, cold, cool, and dry biomes extended to some parts of northern, westem, and eastern China. Warm-temperate evergreen and mixed forests gradually expanded to occupy the whole of southern China. A slight northward shift of forest biomes occurred from 15 ka BP to 12 lea BP. During 11.5 ka BP to 9 ka BP, temperate grassland and shrubland gradually stretched to northern and western China. Cold and cool forests widely expanded into northern and central China, as well as in the northern margin of South China along with temperate deciduous forest. Since the early mid-Holocene (approximately 8.5 ka BP to 5.5 ka BP), all forest biomes shifted northward at the expense of herbaceous and shrubby biomes. Simultaneously, cold and cool forest biomes occupied the marginal areas of the Tibetan Plateau and the high mountains in western China. During the middle to late Holocene, from 5 ka to the present, temperate grassland and xerophytic shrubland expanded to the south and east, whereas temperate deciduous forests slightly shifted southward. After 3 lea BP, forest biomes were absent in western China and on the Tibetan plateau surface. Dramatic biome shifts from the LGM to the Holocene were observed in the forest-grassland ecotone and transitional zones between temperate and subtropical climates, between subtropical and tropical regions, and in the mountainous margins of the eastern Tibetan Plateau. Evidence showed more human disturbances during the late Holocene. More pollen records and historical documents are therefore further needed to understand fully the human disturbance-induced large-scale forest changes. In addition, more classifications of anthropogenic biome or land cover, more distinct assignment of pollen taxa to anthropogenic PFTs, and more effective numerical and/or mechanistic techniques in building large-scale human disturbances are required. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{DallmeyerClaussenWangetal.2012, author = {Dallmeyer, Anne and Claussen, Martin and Wang, Yongbo and Herzschuh, Ulrike}, title = {Spatial variability of Holocene changes in the annual precipitation pattern}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {905}, issn = {1866-8372}, doi = {10.25932/publishup-43277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432771}, pages = {20}, year = {2012}, abstract = {This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.}, language = {en} } @article{LiuStoofLeichsenringKruseetal.2020, author = {Liu, Sisi and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Holocene vegetation and plant diversity changes in the north-eastern Siberian treeline region from pollen and sedimentary ancient DNA}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.560243}, pages = {17}, year = {2020}, abstract = {Although sedimentary ancient DNA (sedaDNA) has been increasingly used to study paleoecological dynamics (Schulte et al., 2020), the approach has rarely been compared with the traditional method of pollen analysis for investigating past changes in the vegetation composition and diversity of Arctic treeline areas. Here, we provide a history of latitudinal floristic composition and species diversity based on a comparison ofsedaDNA and pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. Our results show that thesedaDNA approach identifies more plant taxa found in the local vegetation communities, while the corresponding pollen analysis mainly captures the regional vegetation development and has its limitations for plant diversity reconstruction. Measures of alpha diversity were calculated based onsedaDNA data recovered from along a tundra to forest tundra to open larch forest gradient. Across all sites,sedaDNA archives provide a complementary record of the vegetation transition within each lake's catchment, tracking a distinct latitudinal vegetation type range from larch tree/alder shrub (open larch forest site) to dwarf shrub-steppe (forest tundra) to wet sedge tundra (typical tundra site). By contrast, the pollen data reveal an open landscape, which cannot distinguish the temporal changes in compositional vegetation for the open larch forest site and forest-tundra site. IncreasingLarixpollen percentages were recorded in the forest-tundra site in the last millenium although noLarixDNA was detected, suggesting that thesedaDNA approach performs better for tracking the local establishment ofLarix. Highest species richness and diversity are found in the mid-Holocene (before 4.4 ka) at the typical tundra site with a diverse range of vegetational habitats, while lowest species richness is recorded for the forest tundra where dwarf-willow habitats dominated the lake's catchment. During the late Holocene, strong declines in species richness and diversity are found at the typical tundra site with the vegetation changing to relatively simple communities. Nevertheless, plant species richness is mostly higher than at the forest-tundra site, which shows a slightly decreasing trend. Plant species richness at the open larch forest site fluctuates through time and is higher than the other sites since around 2.5 ka. Taken together, there is no evidence to suggest that the latitudinal gradients in species diversity changes are present at a millennial scale. Additionally, a weak correlation between the principal component analysis (PCA) site scores ofsedaDNA and species richness suggests that climate may not be a direct driver of species turnover within a lake's catchment. Our data suggest thatsedaDNA and pollen have different but complementary abilities for reconstructing past vegetation and species diversity along a latitude.}, language = {en} } @article{HuangStoofLeichsenringLiuetal.2021, author = {Huang, Sichao and Stoof-Leichsenring, Kathleen R. and Liu, Sisi and Courtin, Jeremy and Andreev, Andrej A. and Pestryakova, Luidmila. A. and Herzschuh, Ulrike}, title = {Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.763747}, pages = {15}, year = {2021}, abstract = {Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28-23 ka and a second richness peak during 13-9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community.}, language = {en} } @article{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Earth System Science Data}, volume = {12}, journal = {Earth System Science Data}, number = {1}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-12-119-2020}, pages = {119 -- 135}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @article{GeisslerFiedlerNietal.2019, author = {Geissler, Katja and Fiedler, Sebastian and Ni, Jian and Herzschuh, Ulrike and Jeltsch, Florian}, title = {Combined effects of grazing and climate warming drive shrub dominance on the Tibetan Plateau}, series = {The Rangeland journal}, volume = {41}, journal = {The Rangeland journal}, number = {5}, publisher = {CSIRO Publishing}, address = {Collingwood}, issn = {1036-9872}, doi = {10.1071/RJ19027}, pages = {425 -- 439}, year = {2019}, abstract = {Encroachment of shrubs into the unique pastoral grassland ecosystems of the Tibetan Plateau has significant impact on ecosystem services, especially forage production. We developed a process-based ecohydrological model to identify the relative importance of the main drivers of shrub encroachment for the alpine meadows within the Qinghai province. Specifically, we explored the effects of summer livestock grazing (intensity and type of livestock) together with the effects of climate warming, including interactions between herbaceous and woody vegetation and feedback loops between soil, water and vegetation. Under current climatic conditions and a traditional herd composition, an increasing grazing intensity above a threshold value of 0.32 +/- 0.10 large stock units (LSU) ha(-1) day(-1) changes the vegetation composition from herbaceous towards a woody and bare soil dominated system. Very high grazing intensity (above 0.8 LSU ha(-1) day(-1)) leads to a complete loss of any vegetation. Under warmer conditions, the vegetation showed a higher resilience against livestock farming. This resilience is enhanced when the herd has a higher browser : grazer ratio. A cooler climate has a shrub encroaching effect, whereas warmer conditions increase the cover of the herbaceous vegetation. This effect was primarily due to season length and an accompanied competitive loss of slower growing shrubs, rather than evaporative water loss leading to less soil water in deeper soil layers for deeper rooting shrubs. If climate warming is driving current shrub encroachment, we conclude it is only indirectly so. It would be manifest by an advancing shrubline and could be regarded as a climatic escape of specific shrub species such as Potentilla fruticosa. Under the recent high intensity of grazing, only herding by more browsing animals can potentially prevent both shrub encroachment and the complete loss of herbaceous vegetation.}, language = {en} } @misc{DvornikovLeibmanHeimetal.2018, author = {Dvornikov, Yury and Leibman, Marina and Heim, Birgit and Bartsch, Annett and Herzschuh, Ulrike and Skorospekhova, Tatiana and Fedorova, Irina and Khomutov, Artem and Widhalm, Barbara and Gubarkov, Anatoly and R{\"o}ßler, Sebastian}, title = {Terrestrial CDOM in lakes of Yamal Peninsula}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1333}, issn = {1866-8372}, doi = {10.25932/publishup-45972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459720}, pages = {21}, year = {2018}, abstract = {In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4\% and 28.4\% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces.}, language = {en} } @misc{BriegerHerzschuhPestryakovaetal.2019, author = {Brieger, Frederic and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Bookhagen, Bodo and Zakharov, Evgenii S. and Kruse, Stefan}, title = {Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1337}, issn = {1866-8372}, doi = {10.25932/publishup-47331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473318}, pages = {24}, year = {2019}, abstract = {Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra-taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1\% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE\%) for tree heights (mean R2 = 0.77, mean RMSE\% = 18.46\%) than for crown diameters (mean R2 = 0.46, mean RMSE\% = 24.9\%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra-taiga ecotone should be adapted to the forest structure and have a radius of >15-20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest's stand structure.}, language = {en} } @misc{TianHerzschuhMischkeetal.2014, author = {Tian, Fang and Herzschuh, Ulrike and Mischke, Steffen and Schl{\"u}tz, Frank}, title = {What drives the recent intensified vegetation degradation in Mongolia}, series = {The Holocene}, journal = {The Holocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404201}, pages = {10}, year = {2014}, abstract = {This study examines the course and driving forces of recent vegetation change in the Mongolian steppe. A sediment core covering the last 55years from a small closed-basin lake in central Mongolia was analyzed for its multi-proxy record at annual resolution. Pollen analysis shows that highest abundances of planted Poaceae and highest vegetation diversity occurred during 1977-1992, reflecting agricultural development in the lake area. A decrease in diversity and an increase in Artemisia abundance after 1992 indicate enhanced vegetation degradation in recent times, most probably because of overgrazing and farmland abandonment. Human impact is the main factor for the vegetation degradation within the past decades as revealed by a series of redundancy analyses, while climate change and soil erosion play subordinate roles. High Pediastrum (a green algae) influx, high atomic total organic carbon/total nitrogen (TOC/TN) ratios, abundant coarse detrital grains, and the decrease of C-13(org) and N-15 since about 1977 but particularly after 1992 indicate that abundant terrestrial organic matter and nutrients were transported into the lake and caused lake eutrophication, presumably because of intensified land use. Thus, we infer that the transition to a market economy in Mongolia since the early 1990s not only caused dramatic vegetation degradation but also affected the lake ecosystem through anthropogenic changes in the catchment area.}, language = {en} } @misc{NiemeyerHerzschuhPestryakova2015, author = {Niemeyer, Bastian and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna}, title = {Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records}, series = {The Holocene}, volume = {25}, journal = {The Holocene}, number = {4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404882}, pages = {11}, year = {2015}, abstract = {Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a Pb-210/Cs-137 dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change. We compared the pollen record with Pediastrum species, which we consider to be important proxies of climate changes. Three pollen assemblage zones characterised by Betula nana, Alnus viridis and Larix gmelinii (1706-1808); herbs such as Cyperaceae, Artemisia or Senecio (1808-1879), and higher abundance of Larix pollen (1955-2011) are visible. Also, three Pediastrum assemblage zones show changes of aquatic conditions: higher abundances of Pediastrum boryanum var. brevicorne (1706-1802); medium abundances of P. kawraiskyi and P. integrum (1802-1840 and 1920-1980), indicating cooler conditions while less eutrophic conditions are indicated by P. boryanum, and a mainly balanced composition with only small changes of cold- and warm-adapted Pediastrum species (1965-2011). In general, compositional Pediastrum species turnover is slightly higher than that indicated by pollen data (0.54 vs 0.34 SD), but both are only minor for this treeline location. In conclusion, the relevance of differentiation of Pediastrum species is promising and can give further insights into the relationship between lakes and their surrounding vegetation transferred onto climatic conditions.}, language = {en} } @misc{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1052}, issn = {1866-8372}, doi = {10.25932/publishup-46835}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468352}, pages = {11}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} }