@article{HahnMeyerSchroeteretal.2017, author = {Hahn, Marc Benjamin and Meyer, Susann and Schr{\"o}ter, Maria-Astrid and Seitz, Harald and Kunte, Hans-J{\"o}rg and Solomun, Tihomir and Sturm, Heinz}, title = {Direct electron irradiation of DNA in a fully aqueous environment}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {19}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07707b}, pages = {1798 -- 1805}, year = {2017}, abstract = {We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D-1/2 = 1.7 +/- 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.}, language = {en} } @phdthesis{Hahn2009, author = {Hahn, Harald}, title = {Modularer Ansatz zu multifunktionellen Polymer-Peptid-Fasern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33016}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die Kombination von Polymeren mit Peptiden vereint die Eigenschaften beider Stoffklassen miteinander. Dabei k{\"o}nnen die strukturbildenden Eigenschaften der Peptide genutzt werden, um Polymere zu organisieren. In der vorliegenden Arbeit wurde ein Polymer-Peptid-Konjugat verwendet, das sich in Wasser zu B{\"a}ndern anordnet. Die treibende Kraft f{\"u}r diesen Prozess ist die Anordnung des Peptidteils zu β-Faltblattstrukturen. Das Polymer-Peptid-Aggregat besitzt einen Peptidkern mit funktionalen Oberfl{\"a}chen, der lateral von einer Polyethylenoxidschale umgeben ist. Durch {\"A}nderung der Peptidsequenz war es bisher m{\"o}glich, die Eigenschaften dieser Fasern zu variieren. In der Arbeit wird ein modularer Ansatz zur vielf{\"a}ltigen Modifizierung einer Polymer-Peptid-Faser entwickelt. So ist es m{\"o}glich, die Eigenschaften der Fasern einzustellen, ohne die strukturbildende β-Faltblattsequenz ver{\"a}ndern zu m{\"u}ssen. Um weitere Funktionen an den Fasern anzubringen, wurde die 1,3-dipolaren Addition verwendet. Diese Reaktion beschreibt die konzertierte Umlagerung eines Azides mit einem Alkin. Sie ist in den meisten L{\"o}sungsmitteln unter hohen Ausbeuten durchf{\"u}hrbar. Im Rahmen der Arbeit wird die Erzeugung von Aziden untersucht und auf die Polymer-Peptid-Fasern {\"u}bertragen. Der Diazotransfer stellte dabei die Methode der Wahl dar, so k{\"o}nnen Azidgruppen aus Aminen gewonnen werden. Unter Verwendung der 1,3-dipolaren Addition konnten verschiedene alkinfunktionale Molek{\"u}le kovalent an die azidfunktionalisierten Polymer-Peptid-Fasern gebunden werden. So wurde ein Fluoreszenzfarbstoff an die Fasern gebunden, der eine Abbildung der Fasern mittels konfokaler Mikroskopie erlaubte. Weiterhin wurden die Eigenschaften der Fasern durch Addition dreier carboxylfunktionaler Molek{\"u}le modifiziert. Diese Fasern konnten weiter genutzt werden, um Kalzium zu binden. Dabei variierte die Anzahl der gebundenen Kalziumionen in Abh{\"a}ngigkeit der jeweiligen Fasermodifikation erheblich. Weitere Untersuchungen, die Morphologie von Kalziumcarbonatkristallen betreffend, werden aktuell durchgef{\"u}hrt. Die kovalente Anbringung eines reduzierenden Zuckers an die Polymer-Peptid-Fasern erlaubt die Abscheidung von Silber aus Tollens Reagenz. Durch eine Entwicklung analog zur Schwarz-Weiss-Photographie k{\"o}nnen in nachfolgenden Arbeiten so Silberdr{\"a}hte in Nanogr{\"o}ße erzeugt werden. An die azidfunktionalen Fasern k{\"o}nnen weitere funktionale Molek{\"u}le angebracht werden, um die Eigenschaften und das Anwendungsspektrum der Polymer-Peptid-Fasern zu erweitern.}, language = {de} } @article{HahnSolomunWellhausenetal.2015, author = {Hahn, Marc Benjamin and Solomun, Tihomir and Wellhausen, Robert and Hermann, Sabrina and Seitz, Harald and Meyer, Susann and Kunte, Hans-J{\"o}rg and Zeman, Johannes and Uhlig, Frank and Smiatek, Jens and Sturm, Heinz}, title = {Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {49}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b09506}, pages = {15212 -- 15220}, year = {2015}, abstract = {Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms.}, language = {en} }