@article{ChenLiWangetal.2012, author = {Chen, You-Peng and Li, Jian and Wang, Zi-Neng and Reichetzeder, Christoph and Xu, Hao and Gong, Jian and Chen, Guang-Ji and Pfab, Thiemo and Xiao, Xiao-Min and Hocher, Berthold}, title = {Renin angiotensin aldosterone system and glycemia in pregnancy}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {5-6}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, pages = {527 -- 533}, year = {2012}, abstract = {Background: The renin-angiotensin-aldosterone system (RAAS) is involved in the pathogenesis of insulin resistance and type 2 diabetes in the general population. The RAAS is activated during pregnancy. However, it is unknown whether the RAAS contributes to glycemia in pregnant women. Methods: Plasma renin activity (PRA) and plasma aldosterone levels were quantified at delivery in 689 Chinese mothers. An oral glucose tolerance test in fasted women was performed in the second trimester of pregnancy. The diagnosis of gestational diabetes mellitus (GDM) and impaired glucose tolerance during pregnancy were made according to the guidelines of the Chinese Society of Obstetrics. Results: Plasma aldosterone was significantly higher in pregnant women with GDM as compared to those without impairment of glycemic control (normal pregnancies: 0.27 +/- 0.21 ng/mL, GDM: 0.36 +/- 0.30 ng/mL; p<0.05). Regression analyses revealed that PRA was negatively correlated with fasting blood glucose (FBG) (R-2 = 0.03, p = 0.007), whereas plasma aldosterone and aldosterone/PRA ratio were positively correlated with FBG (R-2 = 0.05, p<0.001 and R-2 = 0.03, p = 0.007, respectively). Multivariable regression analysis models considering relevant confounding factors confirmed these findings. Conclusions: This study demonstrated that fasting blood glucose in pregnant women is inversely correlated with the PRA, whereas plasma aldosterone showed a highly significant positive correlation with fasting blood glucose during pregnancy. Moreover, plasma aldosterone is significantly higher in pregnant women with GDM as compared to those women with normal glucose tolerance during pregnancy. Although causality cannot be proven in association studies, these data may indicate that the RAAS during pregnancy contributes to the pathogenesis of insulin resistance/new onset of diabetes during pregnancy.}, language = {en} } @article{GarbusowEbrahimiRiemerschmidetal.2022, author = {Garbusow, Maria and Ebrahimi, Claudia and Riemerschmid, Carlotta and Daldrup, Luisa and Rothkirch, Marcus and Chen, Ke and Chen, Hao and Belanger, Matthew J. and Hentschel, Angela and Smolka, Michael and Heinz, Andreas and Pilhatsch, Maximilan and Rapp, Michael A.}, title = {Pavlovian-to-instrumental transfer across mental disorders}, series = {Neuropsychobiology : international journal of experimental and clinical research in biological psychiatry, pharmacopsychiatry, Biological Psychology/Pharmacopsychology and Pharmacoelectroencephalography}, volume = {81}, journal = {Neuropsychobiology : international journal of experimental and clinical research in biological psychiatry, pharmacopsychiatry, Biological Psychology/Pharmacopsychology and Pharmacoelectroencephalography}, number = {5}, publisher = {Karger}, address = {Basel}, issn = {0302-282X}, doi = {10.1159/000525579}, pages = {418 -- 437}, year = {2022}, abstract = {A mechanism known as Pavlovian-to-instrumental transfer (PIT) describes a phenomenon by which the values of environmental cues acquired through Pavlovian conditioning can motivate instrumental behavior. PIT may be one basic mechanism of action control that can characterize mental disorders on a dimensional level beyond current classification systems. Therefore, we review human PIT studies investigating subclinical and clinical mental syndromes. The literature prevails an inhomogeneous picture concerning PIT. While enhanced PIT effects seem to be present in non-substance-related disorders, overweight people, and most studies with AUD patients, no altered PIT effects were reported in tobacco use disorder and obesity. Regarding AUD and relapsing alcohol-dependent patients, there is mixed evidence of enhanced or no PIT effects. Additionally, there is evidence for aberrant corticostriatal activation and genetic risk, e.g., in association with high-risk alcohol consumption and relapse after alcohol detoxification. In patients with anorexia nervosa, stronger PIT effects elicited by low caloric stimuli were associated with increased disease severity. In patients with depression, enhanced aversive PIT effects and a loss of action-specificity associated with poorer treatment outcomes were reported. Schizophrenic patients showed disrupted specific but intact general PIT effects. Patients with chronic back pain showed reduced PIT effects. We provide possible reasons to understand heterogeneity in PIT effects within and across mental disorders. Further, we strengthen the importance of reliable experimental tasks and provide test-retest data of a PIT task showing moderate to good reliability. Finally, we point toward stress as a possible underlying factor that may explain stronger PIT effects in mental disorders, as there is some evidence that stress per se interacts with the impact of environmental cues on behavior by selectively increasing cue-triggered wanting. To conclude, we discuss the results of the literature review in the light of Research Domain Criteria, suggesting future studies that comprehensively assess PIT across psychopathological dimensions.}, language = {en} } @article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{ZhouChenDongetal.2015, author = {Zhou, Xiqiang and Chen, Daizhao and Dong, Shaofeng and Zhang, Yanqiu and Guo, Zenghui and Wei, Hengye and Yu, Hao}, title = {Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications for barium and sulfur cycling in the earliest Cambrian}, series = {Precambrian research}, volume = {263}, journal = {Precambrian research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2015.03.006}, pages = {79 -- 87}, year = {2015}, abstract = {Barite concretions and bands are widely distributed in black shale-chert horizons in the Yurtus Formation of Lower Cambrian in Aksu area, northwestern Tarim Basin, NW China. They mainly consist of coarse-grained anhedral to euhedral barite crystals with minor dolomites and pyrites. Petrological features indicate these concretions grew from the porewater in unconsolidated sediments at shallow burial below sediment-water interface. The slight deviation of Sr-87/Sr-86 ratios (0.7083 to 0.7090) and significant elevated delta S-34 values (56.8-76.4 parts per thousand CDT) of barite samples with respect to those of the Early Cambrian seawater further support that barite deposits precipitated from the enclosed porewater in sediment column, which evolved from the penecontemporaneous seawater with weak interaction with the host fine-grained siliciclastic sediments and highly-depleted sulfate in response to prolonged strong bacterial sulfate reduction without necessary renewal. The abundant organic matters in the basal Yurtus Formation should have facilitated developing sulfate-depleted methanogenesis zone and sulfate-methane transition zone (SMTZ) slightly after deposition. Therefore, barite deposits in the Yurtus Formation most likely resulted from diagenetic barium cycling and persistently grew from the porewater in the static SMTZ with a low sedimentation rate in the Early Cambrian. In comparison with the distribution of sedimentary barites in geological records, we tentatively proposed that a transition in diagenetic barium cycling and associated mineralization may have occurred from the Precambrian to Cambrian periods; this scenario may be causally linked to the changes in marine ecology (the advent of mesozooplankton and associated faecal pellet) and geochemistry (the increase of seawater sulfate concentration). Thus, the occurrence of diagenetic barite deposits in the Yurtus Formation implies that diagenetic barium cycling and more effective scavenging of barium from CH4- and Ba-rich porewaters within sediments might have become an nonnegligible process in continental margin areas, at least, since the earliest Cambrian, which could have significantly impacted the marine barium cycling. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{WangWangWangetal.2016, author = {Wang, Hao and Wang, Xue-jiang and Wang, Wei-shi and Yan, Xiang-bo and Xia, Peng and Chen, Jie and Zhao, Jian-fu}, title = {Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil}, series = {Journal of chemical technology \& biotechnology}, volume = {91}, journal = {Journal of chemical technology \& biotechnology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0268-2575}, doi = {10.1002/jctb.4931}, pages = {3045 -- 3052}, year = {2016}, abstract = {BACKROUND: Few studies have been carried out to connect nutrients recovery from wastewater and heavy metals immobilization in contaminated soil. To achieve the goal, ammonia nitrogen (AN) and phosphorus (P) were recovered from rare-earth wastewater by using the formation of struvite, which was used as the amendment with plant ash for copper, lead and chromium immobilization. RESULTS: AN removal efficiency and residual P reached 95.32 +/- 0.73\% and 6.14 +/- 1.72mgL(-1) under optimal conditions: pH= 9.0, n(Mg): n(N): n(P)= 1.2: 1: 1.1, which were obtained using response surface methodology (RSM). The minimum available concentrations of Cu, Pb and Cr (CPC) separately reduced to 320.82 mg kg(-1), 190.77 mg kg(-1) and 121.46 mg kg(-1) with increasing immobilization time at the mass ratio of phosphate precipitate (PP)/plant ash (PA) of 1: 3. Humic acid (HA) and fulvic acid (FA) were beneficial to immobilize Cu, both of which showed no effect or even a negative effect on Pb and Cr immobilization.}, language = {en} } @misc{ChenNebeMojtahedzadehetal.2020, author = {Chen, Hao and Nebe, Stephan and Mojtahedzadeh, Negin and Kuitunen-Paul, Soren and Garbusow, Maria and Schad, Daniel and Rapp, Michael A. and Huys, Quentin J. M. and Heinz, Andreas and Smolka, Michael N.}, title = {Susceptibility to interference between Pavlovian and instrumental control is associated with early hazardous alcohol use}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {4}, issn = {1866-8364}, doi = {10.25932/publishup-56960}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569609}, pages = {16}, year = {2020}, abstract = {Pavlovian-to-instrumental transfer (PIT) tasks examine the influence of Pavlovian stimuli on ongoing instrumental behaviour. Previous studies reported associations between a strong PIT effect, high-risk drinking and alcohol use disorder. This study investigated whether susceptibility to interference between Pavlovian and instrumental control is linked to risky alcohol use in a community sample of 18-year-old male adults. Participants (N = 191) were instructed to 'collect good shells' and 'leave bad shells' during the presentation of appetitive (monetary reward), aversive (monetary loss) or neutral Pavlovian stimuli. We compared instrumental error rates (ER) and functional magnetic resonance imaging (fMRI) brain responses between the congruent and incongruent conditions, as well as among high-risk and low-risk drinking groups. On average, individuals showed a substantial PIT effect, that is, increased ER when Pavlovian cues and instrumental stimuli were in conflict compared with congruent trials. Neural PIT correlates were found in the ventral striatum and the dorsomedial and lateral prefrontal cortices (lPFC). Importantly, high-risk drinking was associated with a stronger behavioural PIT effect, a decreased lPFC response and an increased neural response in the ventral striatum on the trend level. Moreover, high-risk drinkers showed weaker connectivity from the ventral striatum to the lPFC during incongruent trials. Our study links interference during PIT to drinking behaviour in healthy, young adults. High-risk drinkers showed higher susceptibility to Pavlovian cues, especially when they conflicted with instrumental behaviour, indicating lower interference control abilities. Increased activity in the ventral striatum (bottom-up), decreased lPFC response (top-down), and their altered interplay may contribute to poor interference control in the high-risk drinkers.}, language = {en} } @article{ChenBelangerGarbusowetal.2023, author = {Chen, Hao and Belanger, Matthew J. and Garbusow, Maria and Kuitunen-Paul, Soeren and Huys, Quentin J. M. and Heinz, Andreas and Rapp, Michael A. and Smolka, Michael N.}, title = {Susceptibility to interference between Pavlovian and instrumental control predisposes risky alcohol use developmental trajectory from ages 18 to 24}, series = {Addiction biology}, volume = {28}, journal = {Addiction biology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1355-6215}, doi = {10.1111/adb.13263}, pages = {18}, year = {2023}, abstract = {Pavlovian cues can influence ongoing instrumental behaviour via Pavlovian-to-instrumental transfer (PIT) processes. While appetitive Pavlovian cues tend to promote instrumental approach, they are detrimental when avoidance behaviour is required, and vice versa for aversive cues. We recently reported that susceptibility to interference between Pavlovian and instrumental control assessed via a PIT task was associated with risky alcohol use at age 18. We now investigated whether such susceptibility also predicts drinking trajectories until age 24, based on AUDIT (Alcohol Use Disorders Identification Test) consumption and binge drinking (gramme alcohol/drinking occasion) scores. The interference PIT effect, assessed at ages 18 and 21 during fMRI, was characterized by increased error rates (ER) and enhanced neural responses in the ventral striatum (VS), the lateral and dorsomedial prefrontal cortices (dmPFC) during conflict, that is, when an instrumental approach was required in the presence of an aversive Pavlovian cue or vice versa. We found that a stronger VS response during conflict at age 18 was associated with a higher starting point of both drinking trajectories but predicted a decrease in binge drinking. At age 21, high ER and enhanced neural responses in the dmPFC were associated with increasing AUDIT-C scores over the next 3 years until age 24. Overall, susceptibility to interference between Pavlovian and instrumental control might be viewed as a predisposing mechanism towards hazardous alcohol use during young adulthood, and the identified high-risk group may profit from targeted interventions.}, language = {en} } @article{SeboldChenOenaletal.2022, author = {Sebold, Miriam and Chen, Hao and {\"O}nal, Aleyna and Kuitunen-Paul, S{\"o}ren and Mojtahedzadeh, Negin and Garbusow, Maria and Nebe, Stephan and Wittchen, Hans-Ulrich and Huys, Quentin J. M. and Schlagenhauf, Florian and Rapp, Michael A. and Smolka, Michael N. and Heinz, Andreas}, title = {Stronger prejudices are associated with decreased model-based control}, series = {Frontiers in psychology}, volume = {12}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.767022}, pages = {10}, year = {2022}, abstract = {Background: Prejudices against minorities can be understood as habitually negative evaluations that are kept in spite of evidence to the contrary. Therefore, individuals with strong prejudices might be dominated by habitual or "automatic" reactions at the expense of more controlled reactions. Computational theories suggest individual differences in the balance between habitual/model-free and deliberative/model-based decision-making. Methods: 127 subjects performed the two Step task and completed the blatant and subtle prejudice scale. Results: By using analyses of choices and reaction times in combination with computational modeling, subjects with stronger blatant prejudices showed a shift away from model-based control. There was no association between these decision-making processes and subtle prejudices. Conclusion: These results support the idea that blatant prejudices toward minorities are related to a relative dominance of habitual decision-making. This finding has important implications for developing interventions that target to change prejudices across societies.}, language = {en} } @article{ChenNebeMojtahedzadehetal.2020, author = {Chen, Hao and Nebe, Stephan and Mojtahedzadeh, Negin and Kuitunen-Paul, Soren and Garbusow, Maria and Schad, Daniel and Rapp, Michael A. and Huys, Quentin J. M. and Heinz, Andreas and Smolka, Michael N.}, title = {Susceptibility to interference between Pavlovian and instrumental control is associated with early hazardous alcohol use}, series = {Addiction biology}, volume = {26}, journal = {Addiction biology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1355-6215}, doi = {10.1111/adb.12983}, pages = {1 -- 14}, year = {2020}, abstract = {Pavlovian-to-instrumental transfer (PIT) tasks examine the influence of Pavlovian stimuli on ongoing instrumental behaviour. Previous studies reported associations between a strong PIT effect, high-risk drinking and alcohol use disorder. This study investigated whether susceptibility to interference between Pavlovian and instrumental control is linked to risky alcohol use in a community sample of 18-year-old male adults. Participants (N = 191) were instructed to 'collect good shells' and 'leave bad shells' during the presentation of appetitive (monetary reward), aversive (monetary loss) or neutral Pavlovian stimuli. We compared instrumental error rates (ER) and functional magnetic resonance imaging (fMRI) brain responses between the congruent and incongruent conditions, as well as among high-risk and low-risk drinking groups. On average, individuals showed a substantial PIT effect, that is, increased ER when Pavlovian cues and instrumental stimuli were in conflict compared with congruent trials. Neural PIT correlates were found in the ventral striatum and the dorsomedial and lateral prefrontal cortices (lPFC). Importantly, high-risk drinking was associated with a stronger behavioural PIT effect, a decreased lPFC response and an increased neural response in the ventral striatum on the trend level. Moreover, high-risk drinkers showed weaker connectivity from the ventral striatum to the lPFC during incongruent trials. Our study links interference during PIT to drinking behaviour in healthy, young adults. High-risk drinkers showed higher susceptibility to Pavlovian cues, especially when they conflicted with instrumental behaviour, indicating lower interference control abilities. Increased activity in the ventral striatum (bottom-up), decreased lPFC response (top-down), and their altered interplay may contribute to poor interference control in the high-risk drinkers.}, language = {en} } @techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} }