@article{StepanFaberWesseletal.2006, author = {Stepan, H and Faber, R and Wessel, Niels and Wallukat, Gerd and Schultheiss, H. P. and Walther, T}, title = {Relation between circulating angiotensin II type 1 receptor agonistic autoantibodies and soluble fms-like tyrosine kinase 1 in the pathogenesis of preeclampsia}, doi = {10.1210/Jc.2005-2698}, year = {2006}, abstract = {Context: Placental and circulatory soluble fms-like tyrosine kinase 1 (sFlt1) has proven to be elevated in pregnant women with preeclampsia, a disease characterized by hypertension, proteinuria, and endothelial dysfunction. Recent studies also demonstrated an autoantibody against the angiotensin II type 1 (AT1) receptor (AT1-AA) in that disease. Objective: Both factors are discussed as key players in the etiology of preeclampsia. However, it has not yet been clarified whether these two circulating factors correlate and whether synergy determines the severity of pathology. Design: AT1-AA was retrospectively determined by a bioassay and sFlt1 by an ELISA. Patients: Serum from second-trimester pregnancies with normal or abnormal uterine perfusion and in women at term with or without pregnancy pathology was analyzed. Results: Most of the preeclamptic patients were characterized by high sFlt1 levels and the presence of AT1-AA, although the agonistic effects of the antibody did not correlate with the sFlt1 concentrations (P = 0.85). Although AT1- AA was also detected in second-trimester pregnancies evidencing abnormal uterine perfusion without later pathology, sFlt1 was not significantly elevated in these pregnancies, compared with those with normal uterine perfusion. However, whereas women with abnormal perfusion and later pregnancy pathology did not differ in AT1-AA, compared with those with normal outcome, sFlt1 was significantly increased. Again, the two factors did not correlate (P = 0.15). Conclusions: We conclude that AT1-AA bioactivity and sFlt1 concentrations do not correlate, are not mutually dependent, and are thus probably involved in distinct pathogenetic mechanisms. Both factors in combination may not be causative for the early impaired trophoblast invasion and pathological uterine perfusion}, language = {en} } @article{FaberBaumertStepanetal.2004, author = {Faber, R. and Baumert, M. and Stepan, H. and Wessel, Niels and Voss, Andreas and Walther, T.}, title = {Baroreflex sensitivity, heart rate, and blood pressure variability in hypertensive pregnancy disorders}, issn = {0950-9240}, year = {2004}, abstract = {Hypertensive pregnancy disorders are a leading cause of perinatal and maternal morbidity and mortality. Heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) are relevant predictors of cardiovascular risk in humans. The aim of the study was to evaluate whether HRV, BPV, and BRS differ between distinct hypertensive pregnancy disorders. Continuous heart rate and blood pressure recordings were performed in 80 healthy pregnant women as controls (CON), 19 with chronic hypertension (CH), 18 with pregnancy-induced hypertension (PIH), and 44 with pre-eclampsia (PE). The data were assessed by time and frequency domain analysis, nonlinear dynamics, and BRS. BPV is markedly altered in all three groups with hypertensive disorders compared to healthy pregnancies, whereby changes were most pronounced in PE patients. Interestingly, this increase in PE patients did not lead to elevated spontaneous baroreflex events, while BPV changes in both the other hypertensive groups were paralleled by alterations in baroreflex parameters. The HRV is unaltered in CH and PE but significantly impaired in PIH. We conclude that parameters of the HRV, BPV, and BRS differ between various hypertensive pregnancy disorders. Thus, distinct clinical manifestations of hypertension in pregnancy have different pathophysiological, regulatory, and compensatory mechanisms}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{WaltherWesselMalbergetal.2006, author = {Walther, T and Wessel, Niels and Malberg, Hagen and Voss, Andreas and Stepan, H and Faber, R}, title = {A combined technique for predicting pre-eclampsia : concurrent measurement of uterine perfusion and analysis of heart rate and blood pressure variability}, year = {2006}, abstract = {Objective Pre-eclampsia is a serious complication of pregnancy with high morbidity and mortality and an incidence of 3-5\% in all pregnancies. Early prediction is still insufficient in clinical practice. Although most pre- eclamptic patients have pathological uterine perfusion in the second trimester, perfusion disturbance has a positive predictive accuracy (PPA) only of approximately 30\%. Methods Non-invasive continuous blood pressure recordings were taken simultaneously via a finger cuff for 30 min. Time series of systolic as well as diastolic beat-to-beat pressure values were extracted to analyse heart rate and blood pressure variability and baroreflex sensitivity in 102 second- trimester pregnancies, to assess predictability for pre-eclampsia (n = 16). All women underwent Doppler investigations of the uterine arteries. Results We identified a combination of three variability and baroreflex parameters to best predict pre-eclampsia several weeks before clinical manifestation. The discriminant function of these three parameters classified patients with later pre-eclampsia with a sensitivity of 87.5\%, a specificity of 83.7\%, and a PPA of 50.0\%. Combined with Doppler investigations of uterine arteries, PPA increased to 71.4\%. Conclusions This technique of incorporating one-stop clinical assessment of uterine perfusion and variability parameters in the second trimester produces the most effective prediction of pre-eclampsia to date}, language = {en} }