@article{KnapmeyerEndrunKruegerLegendreetal.2013, author = {Knapmeyer-Endrun, Brigitte and Kr{\"u}ger, Frank and Legendre, C. P. and Geissler, Wolfram H.}, title = {Tracing the influence of the trans-european suture zone into the mantle transition zone}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, organization = {PASSEQ Working Grp}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.028}, pages = {73 -- 87}, year = {2013}, abstract = {Cratons with their thick lithospheric roots can influence the thermal structure, and thus the convective flow, in the surrounding mantle. As mantle temperatures are hard to measure directly, depth variations in the mantle transition zone (MTZ) discontinuities are often employed as a proxy. Here, we use a large new data set of P-receiver functions to map the 410 km and 660 km discontinuities beneath the western edge of the East European Craton and adjacent Phanerozoic Europe across the most fundamental lithospheric boundary in Europe, the Trans-European Suture Zone (TESZ). We observe significantly shorter travel times for conversions from both MTZ discontinuities within the craton, caused by the high velocities of the cratonic root. By contrast, the differential travel time across the MTZ is normal to only slightly raised. This implies that any insulating effect of the cratonic keel does not reach the MTZ. In contrast to earlier observations in Siberia, we do not find any trace of a discontinuity at 520 km depth, which indicates a rather dry MTZ beneath the western edge of the craton. Within most of covered Phanerozoic Europe, the MTZ differential travel time is remarkably uniform and in agreement with standard Earth models. No widespread thermal effects of the various episodes of Caledonian and Variscan subduction that took place during the amalgamation of the continent remain. Only more recent tectonic events, related to Alpine subduction and Quarternary volcanism in the Eifel area, can be traced. While the East European craton shows no distinct imprint into the MTZ, we discover the signature of the TESZ in the MTZ in the form of a linear region of about 350 km width with a 1.5 s increase in differential travel time, which could either be caused by high water content or decreased temperature. Taking into account results of recent S-wave tomographies, raised water content in the MTZ cannot be the main cause for this observation. Accordingly, we explain the increase, equivalent to a 15 km thicker MTZ, by a temperature decrease of about 80 K. We discuss two alternative models for this temperature reduction, either a remnant of subduction or an indication of downwelling due to small-scale, edge-driven convection caused by the contrast in lithospheric thickness across the TESZ. Any subducted lithosphere found in the MTZ at this location is unlikely to be related to Variscan subduction along the TESZ, though, as Eurasia has moved significantly northward since the Variscan orogeny.}, language = {en} } @article{KinscherKruegerWoithetal.2013, author = {Kinscher, Jannes and Kr{\"u}ger, Frank and Woith, H. and L{\"u}hr, B. G. and Hintersberger, E. and Irmak, T. Serkan and Baris, S.}, title = {Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {608}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, number = {46}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2013.07.016}, pages = {980 -- 995}, year = {2013}, abstract = {The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, Izmit M-W 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary stresses as transtensional faulting is consistent with the southwest directed far field deformation of the Anatolian plate. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{GassnerThomasKruegeretal.2015, author = {Gassner, Alexandra and Thomas, Christine and Kr{\"u}ger, Frank and Weber, Michael H.}, title = {Probing the core-mantle boundary beneath Europe and Western Eurasia: A detailed study using PcP}, series = {Physics of the earth and planetary interiors}, volume = {246}, journal = {Physics of the earth and planetary interiors}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-9201}, doi = {10.1016/j.pepi.2015.06.007}, pages = {9 -- 24}, year = {2015}, abstract = {We use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Grafenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5\% and -15\%, respectively, with a density increase of +15\%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10\% in V-P and -20\% in Vs cannot be excluded. In general, the whole Volga river region shows a complex pattern of PcP amplitudes caused most likely by CMB undulations. Further PcP probes beneath Paris, Kiev and northern Italy indicate likely normal CMB conditions, whereas the samples below Finland and the Hungary-Slovakia border yield strongly amplified PcP signals suggesting strong CMB topography effects. We evaluate the amplitude behaviour of PcP as a function of distance and several ULVZ models using the 1D reflectivity and the 2D Gauss beam method. The influence of the velocity and density perturbations is analysed as well as the anomaly thickness, the dominant period of the source wavelet and interface topographies. Strong variation of the PcP amplitude are obtained as a function of distance and of the impedance contrast. We also consider two types of topographies: undulations atop the CMB in the presence of flat ULVZs and vice versa. Where a broad range of CMB topography dimensions lead to large PcP amplitude variations, only large ULVZ undulations generate significant amplitude scattering. Consequently, this indicates that topography effects of anomalies may mask the true medium parameters as well as the ULVZ thickness. Moreover, there might be a possibility of misinterpreting the precursor as PcP, in particular for thin ULVZs. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{WeberWicksLeStunffetal.2015, author = {Weber, Michael H. and Wicks, Charles and Le Stunff, Yves and Romanowicz, Barbara and Kr{\"u}ger, Frank}, title = {Seismic evidence for a steeply dipping reflector-stagnant slab in the mantle transition zone}, series = {Geophysical journal international}, volume = {200}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggu438}, pages = {1235 -- 1251}, year = {2015}, abstract = {Studies of seismic tomography have been highly successful at imaging the deep structure of subduction zones. In a study complementary to these tomographic studies, we use array seismology and reflected waves to image a stagnant slab in the mantle transition zone. Using P and S (SH) waves we find a steeply dipping reflector centred at ca. 400 km depth and ca. 550 km west of the present Mariana subduction zone (at 20N, 140E). The discovery of this anomaly in tomography and independently in array seismology (this paper) helps in understanding the evolution of the Mariana margin. The reflector/stagnant slab may be the remains of the hypothetical North New Guinea Plate, which was theorized to have subducted ca. 50 Ma.}, language = {en} } @article{KnapmeyerEndrunKruegerGeissler2017, author = {Knapmeyer-Endrun, Brigitte and Kr{\"u}ger, Frank and Geissler, Wolfram H.}, title = {Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions}, series = {Earth \& planetary science letters}, volume = {458}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, organization = {PASSEQ Working Grp}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.011}, pages = {429 -- 441}, year = {2017}, abstract = {We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22 degrees E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases.}, language = {en} } @article{KitoKruegerNegishi2004, author = {Kito, Tadashi and Kr{\"u}ger, Frank and Negishi, H.}, title = {Seismic heterogeneous structure in the lowermost mantle beneath the southwestern Pacific}, year = {2004}, abstract = {The P and S wave velocity structure of the D" layer beneath the southwestern Pacific was investigated by using short-period data from 12 deep events in the Tonga-Fiji region recorded by the J-Array and the Hi-net (two large- aperture seismic arrays) in Japan. Reflected wave beam forming (RWB) and a migration method were used to extract weak signals originating from heterogeneities in the lowermost mantle. In order to acquire high resolution a double-array method was applied to the data. The results of the RWB method indicate that seismic energy is reflected at discontinuities near the depths of 2520 and 2650 km, which have a negative P wave velocity contrast of 1\% at the most. In addition, there is a positive seismic discontinuity at a depth of 2800 km. In the case of the S wave, reflected energy is produced almost at the same depth (2550 km depth). An apparent depth shift (50 km) of the discontinuity at the depth of 2850 km may indicate that the S wave velocity reduction in the lowermost mantle is similar to2-3 times stronger than that of P. A two-dimensional cross section, constructed with the RWB method, suggests that the observed discontinuities can be characterized as intermittent lateral heterogeneities whose lateral extent is a few hundred kilometers. The migration shows weak evidence of scattering objects which belong to the seismic discontinuities detected by the RWB method. These anomalous structures may represent a part of hot plume generated beneath the southwestern Pacific in the lowermost mantle}, language = {en} } @article{FruebingKruegerGoeringetal.2002, author = {Fr{\"u}bing, Peter and Kr{\"u}ger, Harald and Goering, H. and Gerhard, Reimund}, title = {Relaxation behaviour of thermoplastic polyurethanes with covalently attached nitroaniline dipoles}, year = {2002}, language = {en} } @article{BagnichUngerJaiseretal.2011, author = {Bagnich, Sergey A. and Unger, Th. and Jaiser, Frank and Neher, Dieter and Thesen, M. W. and Kr{\"u}ger, H.}, title = {Efficient green electrophosphorescence based on ambipolar nonconjugated polymers evaluation of transport and emission properties}, series = {Journal of applied physics}, volume = {110}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.3618681}, pages = {9}, year = {2011}, abstract = {New materials for polymer organic light-emitting diodes based on a polymer matrix doped with phosphorescent dyes are presented. The matrix system is based on a polystyrene backbone bearing either electron or hole transporting units at the 4-position of each repeat unit. Random copolymers and polymer blend systems of the homopolymers are prepared, both with 62 wt.\% electron transporting and 38 wt.\% hole transporting moieties. Adding a green electrophosphorescent dye to the polymer matrix leads to efficient electroluminescence with a maximum current efficiency of 35 cd/A and a maximum external quantum efficiency of up to 10\%. The mobilities of electrons and holes in the dye-doped copolymer, as measured by transient electroluminescence, are around 5 x 10(-5) and 5 x 10(-6) cm(2)/Vs, respectively, while the blend of the two homopolymers exhibits slightly lower mobilities of both types of carriers. Despite the pronounced imbalance of charge transport, the device performance is almost entirely limited by the phosphorescence efficiency of the dye, implying balanced flow of holes and electrons into the active region. Also, devices made with either the copolymer or the blend yielded very similar device efficiencies, despite the noticeable difference in electron and hole mobility. It is proposed that electrons are efficiently blocked at the interlayer and that the so-formed space charge assists the balanced injection of holes.}, language = {en} } @article{WelkeSperberBergmannetal.2022, author = {Welke, Robert-William and Sperber, Hannah Sabeth and Bergmann, Ronny and Koikkarah, Amit and Menke, Laura and Sieben, Christian and Kr{\"u}ger, Detlev H. and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Characterization of hantavirus N protein intracellular dynamics and localization}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v14030457}, pages = {14}, year = {2022}, abstract = {Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins.}, language = {en} }