@article{CaronDeFrenneBrunetetal.2015, author = {Caron, Maria Mercedes and De Frenne, Pieter and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Diekmann, Martin and Graae, Bente Jessen and Heinken, Thilo and Kolb, Annette and Lenoir, Jonathan and Naaf, Tobias and Plue, Jan and Selvi, Federico and Wulf, Monika and Verheyen, Kris}, title = {Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change}, series = {Forest ecology and management}, volume = {342}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2015.01.003}, pages = {21 -- 29}, year = {2015}, abstract = {Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BernhardtRoemermannBaetenCravenetal.2015, author = {Bernhardt-R{\"o}mermann, Markus and Baeten, Lander and Craven, Dylan and De Frenne, Pieter and Hedl, Radim and Lenoir, Jonathan and Bert, Didier and Brunet, Jorg and Chudomelova, Marketa and Decocq, Guillaume and Dierschke, Hartmut and Dirnboeck, Thomas and D{\"o}rfler, Inken and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jaroszewicz, Bogdan and Keczynski, Andrzej and Kelly, Daniel L. and Kirby, Keith J. and Kopecky, Martin and Macek, Martin and Malis, Frantisek and Mirtl, Michael and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schmidt, Wolfgang and Standovar, Tibor and Toth, Zoltan and Van Calster, Hans and Verstraeten, Gorik and Vladovic, Jozef and Vild, Ondrej and Wulf, Monika and Verheyen, Kris}, title = {Drivers of temporal changes in temperate forest plant diversity vary across spatial scales}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.12993}, pages = {3726 -- 3737}, year = {2015}, abstract = {Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.}, language = {en} } @article{LemkeKolbGraaeetal.2015, author = {Lemke, Isgard H. and Kolb, Annette and Graae, Bente J. and De Frenne, Pieter and Acharya, Kamal P. and Blandino, Cristina and Brunet, Jorg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Heinken, Thilo and Hermy, Martin and Liira, Jaan and Schmucki, Reto and Shevtsova, Anna and Verheyen, Kris and Diekmann, Martin}, title = {Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient}, series = {Plant ecology : an international journal}, volume = {216}, journal = {Plant ecology : an international journal}, number = {11}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-015-0534-0}, pages = {1523 -- 1536}, year = {2015}, abstract = {Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change.}, language = {en} }