@article{WeberOesterheltGrossetal.2004, author = {Weber, Andreas P. M. and Oesterhelt, Christine and Gross, Wolfgang and Br{\"a}utigam, Andrea and Imboden, Lori and Krassovskaya, Inga and Linka, Nicole and Truchina, Julia and Schneidereit, J{\"o}rg and Voll, Lars and Zimmermann, Marc and Jamai, Aziz and Riekhof, Wayne and Yu, Bin and Garavito, Michael R. and Benning, Christoph}, title = {EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts}, year = {2004}, abstract = {When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90\% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria}, language = {en} } @article{SchachnerGrossHasletal.2021, author = {Schachner, Theresa and Gross, Christoph and Hasl, Andrea and Wangenheim, Florian von and Kowatsch, Tobias}, title = {Deliberative and paternalistic interaction styles for conversational agents in digital health}, series = {Journal of medical internet research : international scientific journal for medical research, information and communication on the internet ; JMIR}, volume = {23}, journal = {Journal of medical internet research : international scientific journal for medical research, information and communication on the internet ; JMIR}, number = {1}, publisher = {Healthcare World}, address = {Richmond, Va.}, issn = {1438-8871}, doi = {10.2196/22919}, pages = {13}, year = {2021}, abstract = {Background: Recent years have witnessed a constant increase in the number of people with chronic conditions requiring ongoing medical support in their everyday lives. However, global health systems are not adequately equipped for this extraordinarily time-consuming and cost-intensive development. Here, conversational agents (CAs) can offer easily scalable and ubiquitous support. Moreover, different aspects of CAs have not yet been sufficiently investigated to fully exploit their potential. One such trait is the interaction style between patients and CAs. In human-to-human settings, the interaction style is an imperative part of the interaction between patients and physicians. Patient-physician interaction is recognized as a critical success factor for patient satisfaction, treatment adherence, and subsequent treatment outcomes. However, so far, it remains effectively unknown how different interaction styles can be implemented into CA interactions and whether these styles are recognizable by users. Objective: The objective of this study was to develop an approach to reproducibly induce 2 specific interaction styles into CA-patient dialogs and subsequently test and validate them in a chronic health care context. Methods: On the basis of the Roter Interaction Analysis System and iterative evaluations by scientific experts and medical health care professionals, we identified 10 communication components that characterize the 2 developed interaction styles: deliberative and paternalistic interaction styles. These communication components were used to develop 2 CA variations, each representing one of the 2 interaction styles. We assessed them in a web-based between-subject experiment. The participants were asked to put themselves in the position of a patient with chronic obstructive pulmonary disease. These participants were randomly assigned to interact with one of the 2 CAs and subsequently asked to identify the respective interaction style. Chi-square test was used to assess the correct identification of the CA-patient interaction style. Results: A total of 88 individuals (42/88, 48\% female; mean age 31.5 years, SD 10.1 years) fulfilled the inclusion criteria and participated in the web-based experiment. The participants in both the paternalistic and deliberative conditions correctly identified the underlying interaction styles of the CAs in more than 80\% of the assessments (X-1(,8)8(2)=38.2; P<.001; phi coefficient r(phi)=0.68). The validation of the procedure was hence successful. Conclusions: We developed an approach that is tailored for a medical context to induce a paternalistic and deliberative interaction style into a written interaction between a patient and a CA. We successfully tested and validated the procedure in a web-based experiment involving 88 participants. Future research should implement and test this approach among actual patients with chronic diseases and compare the results in different medical conditions. This approach can further be used as a starting point to develop dynamic CAs that adapt their interaction styles to their users.}, language = {en} }