@article{MischkeGinatAlSaqaratetal.2012, author = {Mischke, Steffen and Ginat, Hanan and Al-Saqarat, Bety and Almogi-Labin, Ahuva}, title = {Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.017}, pages = {87 -- 99}, year = {2012}, abstract = {The hyperarid region of Israel and Jordan covers a large area where numerous sites of Pleistocene lake sediments suggest that climate conditions were significantly wetter during the Pleistocene. This region experienced a significant increase in aridity in recent decades and the number of existing surface waters is diminishing rapidly. We studied ostracod shells from 49 pond and stream sites to determine the species distribution and to infer ecological preferences especially with respect to general differences in water movement, conductivity and ion composition. Twenty-two ostracod species were identified in total of which 12 taxa occur at three or more sites. Among the rarer species. Cyprinotus scholiosus was identified for the first time after two records from Plio- and Pleistocene sites in Yemen and Saudi Arabia. Further, Paracypretta amati was recorded and its ecological preferences discussed for the first time following the description of the species from its type locality in Sudan. Cypridopsis elongata is the only typical inhabitant of lotic habitats, strictly preferring freshwater conditions and waters with an alkalinity/Ca ratio around 1 and cations dominated by Ca(2+) and anions by HCO(3)(-). In contrast, Cyprideis torosa, Limnocythere inopinata and Heterocypris incongruens apparently prefer waters dominated by Na(+) associated with cations and Cl(-) associated with anions. Heterocypris salina and C. torosa occur over a wide conductivity (or salinity) range and in waters with alkalinity/Ca ratios around 1 and with significant alkalinity depletion. Humphcypris subterranea, Ilyocypris spp. and H. sauna are the only taxa which do not show any preference with respect to both the cation and anion dominance of the waters. The ecological preferences of the ostracod species from water bodies in the study area are discussed in detail and can be used for a qualitative assessment of the hydrodynamical and hydrochemical conditions of former water bodies in the presently hyperarid environment based on ostracod species composition analysis of Pleistocene aquatic sediments.}, language = {en} } @article{MischkeOpitzKalbeetal.2015, author = {Mischke, Steffen and Opitz, Stephan and Kalbe, Johannes and Ginat, Hanan and Al-Saqarat, Bety}, title = {Palaeoenvironmental inferences from late Quaternary sediments of the Al Jafr Basin, Jordan}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {382}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2014.12.041}, pages = {154 -- 167}, year = {2015}, abstract = {Sedimentological, palaeontological and mineralogical analyses of sediments from the endorheic Al Jafr Basin were conducted to better understand the depositional and hydrological conditions on the southern Jordan Plateau in the late Quaternary. Surficially exposed carbonate-rich sediments in the western part of the basin contain ostracod (micro-crustacean) shells of Ilyocypris cf. bradyi, Candona neglecta, Heterocypris salina, Fabaeformiscandona fabaeformis, Pseudocandona sp. and Herpetocypris brevicaudata. The shells of these and other more rare species, and charophyte and mollusc remains indicate that the sediments were formed in a wetland setting of shallow freshwater to slightly oligohaline ponds, streams and swamps. The present more northern distribution of some of the recorded taxa implies that climate conditions were probably cooler during the wetland formation. Radiocarbon age data for biogenic carbonate from two locations suggest that the wetland setting existed during the second half of Marine Isotope Stage (MIS) 3 or possibly earlier. A significantly higher water table must have existed in the basin during wetland formation; and wetter climate conditions are inferred for the catchment or at least for its highest and most humid westernmost part. Deflation and local sediment accumulation by wind and occasional sheet-wash events apparently prevailed in the region since MIS 2. Our newly presented data and inferences do not support the reconstruction of a previously reported large and relatively deep Pleistocene lake in the Al Jafr Basin. However, more extensive studies are certainly required for a detailed assessment of the Quaternary hydrological conditions in southern Jordan. (C) 2014 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} }