@article{SatoGambaleDreyeretal.2006, author = {Sato, A and Gambale, Franco and Dreyer, Ingo and Uozumi, N}, title = {Posttranslational inodification affects K+ current of plant K+ channel}, year = {2006}, language = {en} } @article{VoelkerGomezPorrasBeckeretal.2010, author = {Voelker, Camilla and Gomez-Porras, Judith Lucia and Becker, Dirk and Hamamoto, Shin and Uozumi, Nobuyuki and Gambale, Franco and M{\"u}ller-R{\"o}ber, Bernd and Czempinski, Katrin and Dreyer, Ingo}, title = {Roles of tandem-pore K plus channels in plants : a puzzle still to be solved}, issn = {1435-8603}, doi = {10.1111/j.1438-8677.2010.00353.x}, year = {2010}, abstract = {The group of voltage-independent K+ channels in Arabidopsis thaliana consists of six members, five tandem-pore channels (TPK1-TPK5) and a single K-ir-like channel (KCO3). All TPK/KCO channels are located at the vacuolar membrane except for TPK4, which was shown to be a plasma membrane channel in pollen. The vacuolar channels interact with 14-3-3 proteins (also called General Regulating Factors, GRFs), indicating regulation at the level of protein-protein interactions. Here we review current knowledge about these ion channels and their genes, and highlight open questions that need to be urgently addressed in future studies to fully appreciate the physiological functions of these ion channels.}, language = {en} } @article{NasoDreyerPedemonteetal.2009, author = {Naso, Alessia and Dreyer, Ingo and Pedemonte, Laura and Testa, Ilaria and Gomez-Porras, Judith Lucia and Usai, Cesare and M{\"u}ller-R{\"o}ber, Bernd and Diaspro, Alberto and Gambale, Franco and Picco, Cristiana}, title = {The role of the C-terminus for functional heteromerization of the plant channel KDC1}, issn = {0006-3495}, doi = {10.1016/j.bpj.2009.02.055}, year = {2009}, abstract = {Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K+ channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha- subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two- hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C- terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K-HA domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal KHA domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.}, language = {en} }