@misc{OttoPiontekKalkuhletal.2020, author = {Otto, Christian and Piontek, Franziska and Kalkuhl, Matthias and Frieler, Katja}, title = {Event-based models to understand the scale of the impact of extremes}, series = {Nature energy}, volume = {5}, journal = {Nature energy}, number = {2}, publisher = {Nature Publishing Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-020-0562-4}, pages = {111 -- 114}, year = {2020}, abstract = {Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 degrees C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate-economy and energy systems models.}, language = {en} } @phdthesis{Piontek2009, author = {Piontek, Franziska}, title = {The formation of disk galaxies : a systematic study}, address = {Potsdam}, pages = {X, 135 S. : Ill., graph. Darst.}, year = {2009}, language = {en} } @article{PiontekKalkuhlKriegleretal.2019, author = {Piontek, Franziska and Kalkuhl, Matthias and Kriegler, Elmar and Schultes, Anselm and Leimbach, Marian and Edenhofer, Ottmar and Bauer, Nico}, title = {Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling}, series = {Environmental \& resource economics : the official journal of the European Association of Environmental and Resource Economists}, volume = {73}, journal = {Environmental \& resource economics : the official journal of the European Association of Environmental and Resource Economists}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0924-6460}, doi = {10.1007/s10640-018-00306-7}, pages = {1357 -- 1385}, year = {2019}, abstract = {Despite increasing empirical evidence of strong links between climate and economic growth, there is no established model to describe the dynamics of how different types of climate shocks affect growth patterns. Here we present the first comprehensive, comparative analysis of the long-term dynamics of one-time, temporary climate shocks on production factors, and factor productivity, respectively, in a Ramsey-type growth model. Damages acting directly on production factors allow us to study dynamic effects on factor allocation, savings and economic growth. We find that the persistence of impacts on economic activity is smallest for climate shocks directly impacting output, and successively increases for direct damages on capital, loss of labor and productivity shocks, related to different responses in savings rates and factor-specific growth. Recurring shocks lead to large welfare effects and long-term growth effects, directly linked to the persistence of individual shocks. Endogenous savings and shock anticipation both have adaptive effects but do not eliminate differences between impact channels or significantly lower the dissipation time. Accounting for endogenous growth mechanisms increases the effects. We also find strong effects on income shares, important for distributional implications. This work fosters conceptual understanding of impact dynamics in growth models, opening options for links to empirics.}, language = {en} } @article{SchultesPiontekSoergeletal.2021, author = {Schultes, Anselm and Piontek, Franziska and Soergel, Bjoern and Rogelj, Joeri and Baumstark, Lavinia and Kriegler, Elmar and Edenhofer, Ottmar and Luderer, Gunnar}, title = {Economic damages from on-going climate change imply deeper near-term emission cuts}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {10}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac27ce}, pages = {11}, year = {2021}, abstract = {Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of \$115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only.}, language = {en} } @misc{FrielerLevermannElliottetal.2015, author = {Frieler, Katja and Levermann, Anders and Elliott, J. and Heinke, J. and Arneth, A. and Bierkens, M. F. P. and Ciais, Philippe and Clark, D. B. and Deryng, D. and Doell, P. and Falloon, P. and Fekete, B. and Folberth, Christian and Friend, A. D. and Gellhorn, C. and Gosling, S. N. and Haddeland, I. and Khabarov, N. and Lomas, M. and Masaki, Y. and Nishina, K. and Neumann, K. and Oki, T. and Pavlick, R. and Ruane, A. C. and Schmid, E. and Schmitz, C. and Stacke, T. and Stehfest, E. and Tang, Q. and Wisser, D. and Huber, V. and Piontek, Franziska and Warszawski, L. and Schewe, Jacob and Lotze-Campen, Hermann and Schellnhuber, Hans Joachim}, title = {A framework for the cross-sectoral integration of multi-model impact projections}, series = {Earth system dynamics}, journal = {Earth system dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407968}, pages = {14}, year = {2015}, abstract = {Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.}, language = {en} } @article{FrielerLevermannElliottetal.2015, author = {Frieler, Katja and Levermann, Anders and Elliott, J. and Heinke, Jens and Arneth, A. and Bierkens, M. F. P. and Ciais, Philippe and Clark, D. B. and Deryng, D. and Doell, P. and Falloon, P. and Fekete, B. and Folberth, Christian and Friend, A. D. and Gellhorn, C. and Gosling, S. N. and Haddeland, I. and Khabarov, N. and Lomas, M. and Masaki, Y. and Nishina, K. and Neumann, K. and Oki, T. and Pavlick, R. and Ruane, A. C. and Schmid, E. and Schmitz, C. and Stacke, T. and Stehfest, E. and Tang, Q. and Wisser, D. and Huber, Veronika and Piontek, Franziska and Warszawski, Lila and Schewe, Jacob and Lotze-Campen, Hermann and Schellnhuber, Hans Joachim}, title = {A framework for the cross-sectoral integration of multi-model impact projections}, series = {Earth system dynamics}, volume = {6}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-6-447-2015}, pages = {447 -- 460}, year = {2015}, abstract = {Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.}, language = {en} }