@article{CanitzKirschbaumTiedemann2020, author = {Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240812}, pages = {21}, year = {2020}, abstract = {African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.}, language = {en} } @misc{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86997}, year = {2015}, abstract = {Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @article{FeulnerKirschbaumSchugardtetal.2006, author = {Feulner, Philine G. D. and Kirschbaum, Frank and Schugardt, Christian and Ketmaier, Valerio and Tiedemann, Ralph}, title = {Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei : Mormyridae : Campylomormyrus)}, issn = {1055-7903}, doi = {10.1016/j.ympev.2005.09.008}, year = {2006}, abstract = {For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222 bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C tamandua, there is one common EOD type, regardless of age and sex, whereas in C numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise FST values support our hypothesis that these groups are reproductively isolated. We propose that in C numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs.}, language = {en} } @article{KorniienkoNguyenBaumgartneretal.2020, author = {Korniienko, Yevheniia and Nguyen, Linh and Baumgartner, Stephanie and Vater, Marianne and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Intragenus F1-hybrids of African weakly electric fish (Mormyridae: Campylomormyrus tamandua male x C. compressirostris female) are fertile}, series = {Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {206}, journal = {Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-7594}, doi = {10.1007/s00359-020-01425-7}, pages = {571 -- 585}, year = {2020}, abstract = {Hybridization is widespread in fish and constitutes an important mechanism in fish speciation. There is, however, little knowledge about hybridization in mormyrids. F1-interspecies hybrids betweenCampylomormyrus tamandua male x C. compressirostris female were investigated concerning: (1) fertility; (2) survival of F2-fish and (3) new gene combinations in the F2-generation concerning the structure of the electric organ and features of the electric organ discharge. These F1-hybrids achieved sexual maturity at about 12-13.5 cm total length. A breeding group comprising six males and 13 females spawned 28 times naturally proving these F1-fish to be fertile. On average 228 eggs were spawned, the average fertilization rate was 47.8\%. Eggs started to hatch 70-72 h after fertilization, average hatching rate was 95.6\%. Average mortality rate during embryonic development amounted to 2.3\%. Average malformation rate during the free embryonic stage was 27.7\%. Exogenous feeding started on day 11. In total, we raised 353 normally developed larvae all of which died consecutively, the oldest specimen reaching an age of 5 months. During survival, the activities of the larval and adult electric organs were recorded and the structure of the adult electric organ was investigated histologically.}, language = {en} } @article{NagelKirschbaumTiedemann2017, author = {Nagel, Rebecca and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {203}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-017-1151-2}, pages = {183 -- 195}, year = {2017}, abstract = {In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.}, language = {en} } @article{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, series = {BMC genomics}, volume = {16}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1858-9}, pages = {17}, year = {2015}, abstract = {Background: African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results: Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C. tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions: The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @article{LamannaKirschbaumTiedemann2014, author = {Lamanna, Francesco and Kirschbaum, Frank and Tiedemann, Ralph}, title = {De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei)}, series = {Molecular ecology resources}, volume = {14}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12260}, pages = {1222 -- 1230}, year = {2014}, abstract = {African weakly electric fishes (Mormyridae) underwent an outstanding adaptive radiation (about 200 species), putatively owing to their ability to communicate through species-specific weak electric signals. The electric organ discharge (EOD) is produced by muscle-derived electrocytes organized in piles to form an electric organ. Despite the importance of this trait as a prezygotic isolation mechanism, genomic resources remained limited. We present here a first draft of the skeletal muscle and electric organ transcriptomes from the weakly electric fish species Campylomormyrus compressirostris, obtained using the Illumina HiSeq2000 sequencing technology. Approximately 6.8 Gbp of cDNA sequence data were produced from both tissues, resulting in 57268109 raw reads for the skeletal muscle and 46934923 for the electric organ, and assembled de novo into 46143 and 89270 contigs, respectively. About 50\% of both transcriptomes were annotated after protein databases search. The two transcriptomes show similar profiles in terms of Gene Ontology categories composition. We identified several candidate genes which are likely to play a central role in the production and evolution of the electric signal. For most of these genes, and for many other housekeeping genes, we were able to obtain the complete or partial coding DNA sequences (CDS), which can be used for the development of primers to be utilized in qRT-PCR experiments. We present also the complete mitochondrial genome and compare it to those available from other weakly electric fish species. Additionally, we located 1671 SSR-containing regions with their flanking sites and designed the relative primers. This study establishes a first step in the development of genomic tools aimed at understanding the role of electric communication during speciation.}, language = {en} } @article{NagelKirschbaumHofmannetal.2018, author = {Nagel, Rebecca and Kirschbaum, Frank and Hofmann, Volker and Engelmann, Jacob and Tiedemann, Ralph}, title = {Electric pulse characteristics can enable species recognition in African weakly electric fish species}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-29132-z}, pages = {1 -- 12}, year = {2018}, abstract = {Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon.}, language = {en} } @article{PaulMamonekeneVateretal.2015, author = {Paul, Christiane and Mamonekene, Victor and Vater, Marianne and Feulner, Philine G. D. and Engelmann, Jacob and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae)}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {201}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-015-0995-6}, pages = {357 -- 374}, year = {2015}, abstract = {The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.}, language = {en} } @article{FeulnerPlathEngelmannetal.2009, author = {Feulner, Philine G. D. and Plath, Martin and Engelmann, Jacob and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Electrifying love : electric fish use species-specific discharge for mate recognition}, issn = {1744-9561}, doi = {10.1098/rsbl.2008.0566}, year = {2009}, abstract = {Mate choice is mediated by a range of sensory cues, and assortative mating based on these cues can drive reproductive isolation among diverging populations. A specific feature of mormyrid fish, the electric organ discharge (EOD), is used for electrolocation and intraspecific communication. We hypothesized that the EOD also facilitates assortative mating and ultimately promotes prezygotic reproductive isolation in African weakly electric fishes. Our behavioural experiments using live males as well as EOD playback demonstrated that female mate recognition is influenced by EOD signals and that females are attracted to EOD characteristics of conspecific males. The dual function of the EOD for both foraging and social communication (including mate recognition leading to assortative mating) underlines the importance of electric signal differentiation for the divergence of African weakly electric fishes. Thus, the EOD provides an intriguing mechanism promoting trophic divergence and reproductive isolation between two closely related Campylomormyrus species occurring in sympatry in the lower Congo rapids.}, language = {en} } @article{FeulnerKirschbaumTiedemann2005, author = {Feulner, Philine g. d. and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Eighteen microsatellite loci for endemic African weakly electric fish (Campylomormyrus, Mormyridae) and their cross species applicability among related taxa}, year = {2005}, abstract = {We describe isolation and characterization of the first microsatellite loci specifically developed for African weakly electric fish (Mormyridae), for the genus Campylomormyrus. Seventeen of our 18 loci are polymorphic within the Campylomormyrus numenius species complex. The polymorphic loci showed four to 15 alleles per locus, an expected heterozygosity between 0.46 and 0.94, and an observed heterozygosity between 0.31 and 1.00. Most primers also yield reproducible results in several other mormyrid species. These loci comprise a set of molecular markers for various applications, from moderately polymorphic loci suitable for population studies to highly polymorphic loci for pedigree analysis in mormyrids}, language = {en} } @article{KorniienkoTiedemannVateretal.2020, author = {Korniienko, Yevheniia and Tiedemann, Ralph and Vater, Marianne and Kirschbaum, Frank}, title = {Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae)}, series = {The journal of comparative neurology}, volume = {529}, journal = {The journal of comparative neurology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.25003}, pages = {1052 -- 1065}, year = {2020}, abstract = {The electric organ of the mormyrid weakly electric fish,Campylomormyrus rhynchophorus(Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 mu m(2)). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 mu m(2)). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured a prominent increase in size of the papillae (average area 402 mu m(2)). Thus, there was no linear correlation between EOD duration and papillary size. The most prominent ultrastructural change was at the level of the myofilaments, which regularly extended into the papillae, only in the oldest specimen-probably serving a supporting function. Physiological mechanisms, like gene expression levels, as demonstrated in someCampylomormyrusspecies, might be more important concerning the duration of the EOD.}, language = {en} } @misc{NagelKirschbaumHofmannetal.2018, author = {Nagel, Rebecca and Kirschbaum, Frank and Hofmann, Volker and Engelmann, Jacob and Tiedemann, Ralph}, title = {Electric pulse characteristics can enable species recognition in African weakly electric fish species}, series = {Scientific Reports}, journal = {Scientific Reports}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417577}, pages = {12}, year = {2018}, abstract = {Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon.}, language = {en} } @misc{NagelKirschbaumEngelmannetal.2018, author = {Nagel, Rebecca and Kirschbaum, Frank and Engelmann, Jacob and Hofmann, Volker and Pawelzik, Felix and Tiedemann, Ralph}, title = {Male-mediated species recognition among African weakly electric fishes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {645}, issn = {1866-8372}, doi = {10.25932/publishup-42501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425016}, pages = {8}, year = {2018}, abstract = {Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus Africanweakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species.}, language = {en} } @article{GessnerArndtTiedemannetal.2006, author = {Gessner, J{\"o}rn and Arndt, Gerd-Michael and Tiedemann, Ralph and Bartel, Ryszard and Kirschbaum, Frank}, title = {Remediation measures for the Baltic sturgeon: status review and perspectives}, series = {Journal of applied ichthyology}, volume = {22}, journal = {Journal of applied ichthyology}, number = {S1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0175-8659}, doi = {10.1111/j.1439-0426.2007.00925.x}, pages = {23 -- 31}, year = {2006}, abstract = {More than one century ago, sturgeons were prevalent species in the fish communities of all major German rivers both in the North and the Baltic seas drainages. Since then, the populations declined rapidly due to river damming, overfishing and pollution. The last sturgeon catches in the Baltic drainage system occurred during the late 1960ies. Only a few individual captures have been reported during the last 30 years with the most recent records in the Lake Ladoga ( Russia), where the last confirmed catch was recorded in 1984, and a single individual caught off Estonia in 1996. Today, sturgeons are considered missing or extinct in German waters. First attempts for remediation of the species were undertaken in the mid 1990ies. Subsequently, phylogenetic and population genetic analyses of the species were carried out using mtDNA, microsatellites, and nuclear markers ( SNPs). These genetic analyses using recent and historic material have proven the existence of two different species in the Baltic Sea in what was previously considered to represent the European Atlantic sturgeon only. In the Baltic Sea, the American Atlantic sturgeon ( A. oxyrinchus) succeeded to colonize this brackish water system during the Middle Ages. In the North Sea, the European Atlantic sturgeon ( A. sturio) is considered to be the endemic species. These results led to the separation of the remediation activities in the North Sea and the Baltic Sea tributaries. Further studies on the mechanism that lead to the extinction of A. sturio in Germany and the subsequent succession of the A. oxyrinchus mtDNA haplotype are currently been carried out. Broodstock development using the northernmost populations of A. oxyrinchus is currently under way. As a further prerequisite to re-introduce this species into the Baltic, the evaluation of the status of critical habitats for the early life stages of the American Atlantic sturgeon in the River Odra has been performed in collaboration with the Institute for Inland Fisheries of Poland. Alternative fisheries techniques, based on the data of by-catch of exotic sturgeons in the fishery, are presently developed in close cooperation with the fishery to reduce fisheries related mortality in juvenile sturgeons upon release. Monitoring of habitat utilization and migration characteristics of juvenile fish upon experimental release will have to be carried out shortly, using acoustic telemetry, with the aim to follow the fate of the released fish and to determine the best time-size-release-window for future release programmes.}, language = {en} } @article{LamannaKirschbaumErnstetal.2016, author = {Lamanna, Francesco and Kirschbaum, Frank and Ernst, Anja R. R. and Feulner, Philine G. D. and Mamonekene, Victor and Paul, Christiane and Tiedemann, Ralph}, title = {Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus)}, series = {Molecular phylogenetics and evolution}, volume = {101}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.04.035}, pages = {8 -- 18}, year = {2016}, abstract = {African weakly-electric fishes (Mormyridae) are able to communicate through species-specific electric signals; this feature might have favoured the evolutionary radiation observed in this family (over 200 species) by acting as an effective pre-zygotic isolation mechanism. In the present study we used mitochondria((cytb) and nuclear (rps7, scn4aa) markers in order to reconstruct a species-phylogeny and identify species boundaries for the genus Campylomormyrus, by applying inference methods based on the multispecies coalescent model. Additionally, we employed 16 microsatellite markers, landmark-based morphometric measurements, and electro-physiological analyses as independent lines of evidence to the results obtained from the sequence data. The results show that groups that are morphologically different are also significantly divergent at the genetic level, whereas morphologically similar groups, displaying dissimilar electric signals, do not show enough genetic diversity to be considered separate species. Furthermore, the data confirm the presence of a yet undescribed species within the genus Campylomormyrus. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{NagelKirschbaumEngelmannetal.2018, author = {Nagel, Rebecca and Kirschbaum, Frank and Engelmann, Jacob and Hofmann, Volker and Pawelzik, Felix and Tiedemann, Ralph}, title = {Male-mediated species recognition among African weakly electric fishes}, series = {Royal Society Open Science}, volume = {5}, journal = {Royal Society Open Science}, number = {2}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.170443}, pages = {8}, year = {2018}, abstract = {Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus Africanweakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species.}, language = {en} } @article{PaulKirschbaumMamonekeneetal.2016, author = {Paul, Christiane and Kirschbaum, Frank and Mamonekene, Victor and Tiedemann, Ralph}, title = {Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae)}, series = {Journal of molecular evolution}, volume = {83}, journal = {Journal of molecular evolution}, publisher = {Springer}, address = {New York}, issn = {0022-2844}, doi = {10.1007/s00239-016-9754-8}, pages = {61 -- 77}, year = {2016}, abstract = {Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor—together with the electrocyte's morphology and innervation pattern—that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels. In mormyroids, SCN4aa is solely expressed in the electrocytes of the adult electric organ. In this study, we compared entire SCN4aa sequences of six species of the genus Campylomormyrus and identified nonsynonymous substitutions among them. SCN4aa in Campylomormyrus exhibits a much higher evolutionary rate compared to its paralog SCN4ab, whose expression is not restricted to the electric organ. We also found evidence for strong positive selection on the SCN4aa gene within Mormyridae and along the lineage ancestral to the Mormyridae. We have identified sites at which all nonelectric teleosts are monomorphic in their amino acid, but mormyrids have different amino acids. Our findings confirm the crucial role of SCN4aa in EOD evolution among mormyrid weakly electric fish. The inferred positive selection within Mormyridae makes this gene a prime candidate for further investigation of the divergent evolution of pulse-type EODs among closely related species.}, language = {en} } @unpublished{BaretBelderBieretal.2012, author = {Baret, Jean-Christophe and Belder, Detlev and Bier, Frank Fabian and Cao, Jialan and Gruschke, Oliver and Hardt, Steffen and Kirschbaum, Michael and Koehler, J. Michael and Schumacher, Soeren and Urban, G. A. and Viefhues, Martina}, title = {Contributors to the 10th Anniversary Germany issue}, series = {LAB on a chip : miniaturisation for chemistry and biology}, volume = {12}, journal = {LAB on a chip : miniaturisation for chemistry and biology}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1473-0197}, doi = {10.1039/c1lc90139g}, pages = {419 -- 421}, year = {2012}, language = {en} } @article{NguyenMamonekeneVateretal.2020, author = {Nguyen, Manh Duy Linh and Mamonekene, Victor and Vater, Marianne and Bartsch, Peter and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae)}, series = {Journal of comparative physiology; A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {206}, journal = {Journal of comparative physiology; A, Neuroethology, sensory, neural, and behavioral physiology}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0340-7594}, doi = {10.1007/s00359-020-01411-z}, pages = {453 -- 466}, year = {2020}, abstract = {The aim of this study was a longitudinal description of the ontogeny of the adult electric organ of Campylomormyrus rhynchophorus which produces as adult an electric organ discharge of very long duration (ca. 25 ms). We could indeed show (for the first time in a mormyrid fish) that the electric organ discharge which is first produced early during ontogeny in 33-mm-long juveniles is much shorter in duration and has a different shape than the electric organ discharge in 15-cm-long adults. The change from this juvenile electric organ discharges into the adult electric organ discharge takes at least a year. The increase in electric organ discharge duration could be causally linked to the development of surface evaginations, papillae, at the rostral face of the electrocyte which are recognizable for the first time in 65-mm-long juveniles and are most prominent at the periphery of the electrocyte.}, language = {en} } @article{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {668}, publisher = {Biomed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1858-9}, year = {2015}, abstract = {Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @misc{AmenNagelHedtetal.2020, author = {Amen, Rahma and Nagel, Rebecca and Hedt, Maximilian and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-51871}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518714}, pages = {13}, year = {2020}, abstract = {Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.}, language = {en} } @article{AmenNagelHedtetal.2020, author = {Amen, Rahma and Nagel, Rebecca and Hedt, Maximilian and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences}, series = {Evolutionary Ecology}, volume = {34}, journal = {Evolutionary Ecology}, number = {3}, publisher = {Springer Science}, address = {Dordrecht}, issn = {0269-7653}, doi = {10.1007/s10682-020-10043-3}, pages = {427 -- 437}, year = {2020}, abstract = {Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.}, language = {en} } @article{KorniienkoNguyenBaumgartneretal.2021, author = {Korniienko, Yevheniia and Nguyen, Linh and Baumgartner, Stephanie and Vater, Marianne and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Correction to: Intragenus F1-hybrids of African weakly electric fish (Mormyridae: Campylomormyrus tamandua male x C. compressirostris female) are fertile (vol 206, pg 571, 2020)}, series = {Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {207}, journal = {Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-7594}, doi = {10.1007/s00359-021-01513-2}, pages = {773 -- 773}, year = {2021}, language = {en} }