@article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{BurattiThomasRoussosetal.2019, author = {Buratti, Bonnie J. and Thomas, P. C. and Roussos, E. and Howett, Carly and Seiss, Martin and Hendrix, A. R. and Helfenstein, Paul and Brown, R. H. and Clark, R. N. and Denk, Tilmann and Filacchione, Gianrico and Hoffmann, Holger and Jones, Geraint H. and Khawaja, N. and Kollmann, Peter and Krupp, Norbert and Lunine, Jonathan and Momary, T. W. and Paranicas, Christopher and Postberg, Frank and Sachse, Manuel and Spahn, Frank and Spencer, John and Srama, Ralf and Albin, T. and Baines, K. H. and Ciarniello, Mauro and Economou, Thanasis and Hsu, Hsiang-Wen and Kempf, Sascha and Krimigis, Stamatios M. and Mitchell, Donald and Moragas-Klostermeyer, Georg and Nicholson, Philip D. and Porco, C. C. and Rosenberg, Heike and Simolka, Jonas and Soderblom, Laurence A.}, title = {Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat2349}, pages = {1053}, year = {2019}, abstract = {Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.}, language = {en} } @article{vanderValkKreinerMollerKooijmanetal.2015, author = {van der Valk, Ralf J. P. and Kreiner-Moller, Eskil and Kooijman, Marjolein N. and Guxens, Monica and Stergiakouli, Evangelia and Saaf, Annika and Bradfield, Jonathan P. and Geller, Frank and Hayes, M. Geoffrey and Cousminer, Diana L. and Koerner, Antje and Thiering, Elisabeth and Curtin, John A. and Myhre, Ronny and Huikari, Ville and Joro, Raimo and Kerkhof, Marjan and Warrington, Nicole M. and Pitkanen, Niina and Ntalla, Ioanna and Horikoshi, Momoko and Veijola, Riitta and Freathy, Rachel M. and Teo, Yik-Ying and Barton, Sheila J. and Evans, David M. and Kemp, John P. and St Pourcain, Beate and Ring, Susan M. and Smith, George Davey and Bergstrom, Anna and Kull, Inger and Hakonarson, Hakon and Mentch, Frank D. and Bisgaard, Hans and Chawes, Bo Lund Krogsgaard and Stokholm, Jakob and Waage, Johannes and Eriksen, Patrick and Sevelsted, Astrid and Melbye, Mads and van Duijn, Cornelia M. and Medina-Gomez, Carolina and Hofman, Albert and de Jongste, Johan C. and Taal, H. Rob and Uitterlinden, Andre G. and Armstrong, Loren L. and Eriksson, Johan and Palotie, Aarno and Bustamante, Mariona and Estivill, Xavier and Gonzalez, Juan R. and Llop, Sabrina and Kiess, Wieland and Mahajan, Anubha and Flexeder, Claudia and Tiesler, Carla M. T. and Murray, Clare S. and Simpson, Angela and Magnus, Per and Sengpiel, Verena and Hartikainen, Anna-Liisa and Keinanen-Kiukaanniemi, Sirkka and Lewin, Alexandra and Alves, Alexessander Da Silva Couto and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Kaakinen, Marika and Rodriguez, Alina and Sebert, Sylvain and Vaarasmaki, Marja and Lakka, Timo and Lindi, Virpi and Gehring, Ulrike and Postma, Dirkje S. and Ang, Wei and Newnham, John P. and Lyytikainen, Leo-Pekka and Pahkala, Katja and Raitakari, Olli T. and Panoutsopoulou, Kalliope and Zeggini, Eleftheria and Boomsma, Dorret I. and Groen-Blokhuis, Maria and Ilonen, Jorma and Franke, Lude and Hirschhorn, Joel N. and Pers, Tune H. and Liang, Liming and Huang, Jinyan and Hocher, Berthold and Knip, Mikael and Saw, Seang-Mei and Holloway, John W. and Melen, Erik and Grant, Struan F. A. and Feenstra, Bjarke and Lowe, William L. and Widen, Elisabeth and Sergeyev, Elena and Grallert, Harald and Custovic, Adnan and Jacobsson, Bo and Jarvelin, Marjo-Riitta and Atalay, Mustafa and Koppelman, Gerard H. and Pennell, Craig E. and Niinikoski, Harri and Dedoussis, George V. and Mccarthy, Mark I. and Frayling, Timothy M. and Sunyer, Jordi and Timpson, Nicholas J. and Rivadeneira, Fernando and Bonnelykke, Klaus and Jaddoe, Vincent W. V.}, title = {A novel common variant in DCST2 is associated with length in early life and height in adulthood}, series = {Human molecular genetics}, volume = {24}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Genetics Lifecourse, Genetic Invest ANthropometric, Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddu510}, pages = {1155 -- 1168}, year = {2015}, abstract = {Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 x 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; beta = 0.046, SE = 0.008, P = 2.46 x 10(-8), explained variance = 0.05\%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 x 10(-4)) and adult height (N = 127 513; P = 1.45 x 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13\% of variance in birth length. The same SNPs explained 2.95\% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.}, language = {en} } @article{ArridgeAchilleosAgarwaletal.2014, author = {Arridge, Christopher S. and Achilleos, N. and Agarwal, Jessica and Agnor, C. B. and Ambrosi, R. and Andre, N. and Badman, S. V. and Baines, K. and Banfield, D. and Barthelemy, M. and Bisi, M. M. and Blum, J. and Bocanegra-Bahamon, T. and Bonfond, B. and Bracken, C. and Brandt, P. and Briand, C. and Briois, C. and Brooks, S. and Castillo-Rogez, J. and Cavalie, T. and Christophe, B. and Coates, Andrew J. and Collinson, G. and Cooper, J. F. and Costa-Sitja, M. and Courtin, R. and Daglis, I. A. and De Pater, Imke and Desai, M. and Dirkx, D. and Dougherty, M. K. and Ebert, R. W. and Filacchione, Gianrico and Fletcher, Leigh N. and Fortney, J. and Gerth, I. and Grassi, D. and Grodent, D. and Gr{\"u}n, Eberhard and Gustin, J. and Hedman, M. and Helled, R. and Henri, P. and Hess, Sebastien and Hillier, J. K. and Hofstadter, M. H. and Holme, R. and Horanyi, M. and Hospodarsky, George B. and Hsu, S. and Irwin, P. and Jackman, C. M. and Karatekin, O. and Kempf, Sascha and Khalisi, E. and Konstantinidis, K. and Kruger, H. and Kurth, William S. and Labrianidis, C. and Lainey, V. and Lamy, L. L. and Laneuville, Matthieu and Lucchesi, D. and Luntzer, A. and MacArthur, J. and Maier, A. and Masters, A. and McKenna-Lawlor, S. and Melin, H. and Milillo, A. and Moragas-Klostermeyer, Georg and Morschhauser, Achim and Moses, J. I. and Mousis, O. and Nettelmann, N. and Neubauer, F. M. and Nordheim, T. and Noyelles, B. and Orton, G. S. and Owens, Mathew and Peron, R. and Plainaki, C. and Postberg, F. and Rambaux, N. and Retherford, K. and Reynaud, Serge and Roussos, E. and Russell, C. T. and Rymer, Am. and Sallantin, R. and Sanchez-Lavega, A. and Santolik, O. and Saur, J. and Sayanagi, Km. and Schenk, P. and Schubert, J. and Sergis, N. and Sittler, E. C. and Smith, A. and Spahn, Frank and Srama, Ralf and Stallard, T. and Sterken, V. and Sternovsky, Zoltan and Tiscareno, M. and Tobie, G. and Tosi, F. and Trieloff, M. and Turrini, D. and Turtle, E. P. and Vinatier, S. and Wilson, R. and Zarkat, P.}, title = {The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.08.009}, pages = {122 -- 140}, year = {2014}, abstract = {Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99\% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2016, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Fai{\c{c}}al Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Bottcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, Christoph and deWilt, P. and Djannati-Atai, Arache and Domainko, Wilfried and Donath, Axel and Dubus, Guillaume and Dutson, Kate and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, Stuart and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and F{\"u}ßling, Matthias and Gabici, Stefano and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, Gianluca and Giebels, B. and Glicenstein, J. F. and Gottschall, Daniel and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, Gilles and Hermann, G. and Hervet, Olivier and Hillert, A. and Hinton, James Anthony and Hofmann, Werner and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, Alex and Jacholkowska, A. and Jamrozy, Marek and Janiak, M. and Jankowsky, D. and Jankowsky, Felix and Jingo, M. and Jogler, Tobias and Jouvin, Lea and Jung-Richardt, Ira and Kastendieck, M. A. and Katarzynski, Krzysztof and Katz, Uli and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, Michael and Krayzel, F. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, Jeanie and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, Thomas and Lorentz, M. and Lui, R. and Lypova, Iryna and Marandon, Vincent and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and Meintjes, Petrus Johannes and Menzler, U. and Meyer, Manuel and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, Mathieu and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, Hirokazu and Ohm, Stefan and Oettl, S. and Ostrowski, M. and Oya, I. and Padovani, Marco and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and Prokhorov, Dmitry and Prokoph, Heike and Puehlhofer, Gerd and Punch, Michael and Quirrenbach, Andreas and Raab, S. and Reimer, Anita and Reimer, Olaf and Renaud, M. and de los Reyes, R. and Rieger, Frank and Romoli, Carlo and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, David and Sanchez, David A. and Santangelo, Andrea and Sasaki, Manami and Schlickeiser, Reinhard and Schussler, F. and Schulz, Andreas and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Simoni, R. and Sol, H. and Spanier, Felix and Spengler, G. and Spiess, F. and Stawarz, Lukasz and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Tuffs, R. and van der Walt, Johan and van Eldik, Christopher and van Soelen, Brian and Vasileiadis, Georges and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, Jacco and Voisin, F. and Voelk, Heinrich J. and Vuillaume, Thomas and Wadiasingh, Z. and Wagner, Stefan J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, Alicja and Willmann, P. and Woernlein, A. and Wouters, Denis and Yang, R. and Zabalza, Victor and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Andreas and Zefi, F. and Ziegler, A. and Zywucka, Natalia}, title = {Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with HESS}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.111301}, pages = {6}, year = {2016}, abstract = {The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section . These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe values expected from the thermal relic density for TeV DM particles.}, language = {en} } @article{TaalStPourcainThieringetal.2012, author = {Taal, H. Rob and St Pourcain, Beate and Thiering, Elisabeth and Das, Shikta and Mook-Kanamori, Dennis O. and Warrington, Nicole M. and Kaakinen, Marika and Kreiner-Moller, Eskil and Bradfield, Jonathan P. and Freathy, Rachel M. and Geller, Frank and Guxens, Monica and Cousminer, Diana L. and Kerkhof, Marjan and Timpson, Nicholas J. and Ikram, M. Arfan and Beilin, Lawrence J. and Bonnelykke, Klaus and Buxton, Jessica L. and Charoen, Pimphen and Chawes, Bo Lund Krogsgaard and Eriksson, Johan and Evans, David M. and Hofman, Albert and Kemp, John P. and Kim, Cecilia E. and Klopp, Norman and Lahti, Jari and Lye, Stephen J. and McMahon, George and Mentch, Frank D. and Mueller-Nurasyid, Martina and O'Reilly, Paul F. and Prokopenko, Inga and Rivadeneira, Fernando and Steegers, Eric A. P. and Sunyer, Jordi and Tiesler, Carla and Yaghootkar, Hanieh and Breteler, Monique M. B. and Debette, Stephanie and Fornage, Myriam and Gudnason, Vilmundur and Launer, Lenore J. and van der Lugt, Aad and Mosley, Thomas H. and Seshadri, Sudha and Smith, Albert V. and Vernooij, Meike W. and Blakemore, Alexandra I. F. and Chiavacci, Rosetta M. and Feenstra, Bjarke and Fernandez-Banet, Julio and Grant, Struan F. A. and Hartikainen, Anna-Liisa and van der Heijden, Albert J. and Iniguez, Carmen and Lathrop, Mark and McArdle, Wendy L. and Molgaard, Anne and Newnham, John P. and Palmer, Lyle J. and Palotie, Aarno and Pouta, Annneli and Ring, Susan M. and Sovio, Ulla and Standl, Marie and Uitterlinden, Andre G. and Wichmann, H-Erich and Vissing, Nadja Hawwa and DeCarli, Charles and van Duijn, Cornelia M. and McCarthy, Mark I. and Koppelman, Gerard H. and Estivill, Xavier and Hattersley, Andrew T. and Melbye, Mads and Bisgaard, Hans and Pennell, Craig E. and Widen, Elisabeth and Hakonarson, Hakon and Smith, George Davey and Heinrich, Joachim and Jarvelin, Marjo-Riitta and Jaddoe, Vincent W. V. and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Davis, Oliver S. P. and Elliott, Paul and Evans, David M. and Feenstra, Bjarke and Flexeder, Claudia and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Geller, Frank and Groen-Blokhuis, Maria and Goh, Liang-Kee and Guxens, Monica and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Iniguez, Carmen and Kaakinen, Marika and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and O'Reilly, Paul F. and Palmer, Lyle J. and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Prokopenko, Inga and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Sovio, Ulla and St Pourcain, Beate and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Teo, Yik-Ying and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Estivill, Xavier and Gillman, Matthew and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Hocher, Berthold and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Lakka, Timo A. and McCarthy, Mark I. and Melbye, Mads and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Pennell, Craig E. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Timpson, Nicholas J. and Widen, Elisabeth and Wilson, James F. and Ang, Wei and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Elliott, Paul and Evans, David M. and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Groen-Blokhuis, Maria and Guxens, Monica and Hadley, Dexter and Hottenga, Jouke Jan and Huikari, Ville and Hypponen, Elina and Kaakinen, Marika and Kowgier, Matthew and Lawlor, Debbie A. and Lewin, Alex and Lindgren, Cecilia and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Nivard, Michel and O'Reilly, Paul F. and Palmer, Lyle J. and Prokopenko, Inga and Rodriguez, Alina and Sebert, Sylvain and Sovio, Ulla and St Pourcain, Beate and Standl, Marie and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Boomsma, Dorret I. and Estivill, Xavier and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Pennell, Craig E. and Power, Chris and Timpson, Nicholas J. and Widen, Elisabeth and Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles}, title = {Common variants at 12q15 and 12q24 are associated with infant head circumference}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Cohorts Heart Aging Res Genetic Ep, Early Genetics Lifecourse Epidemio, Early Growth Genetics EGG Consorti}, issn = {1061-4036}, doi = {10.1038/ng.2238}, pages = {532 -- +}, year = {2012}, abstract = {To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.}, language = {en} } @article{BeaumontWarringtonCavadinoetal.2018, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-Moller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, Oyvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Njolstad, Pal R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Jarvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F. A. and Sorensen, Thorkild I. A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hypponen, Elina and Lowe, William L. and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Human molecular genetics}, volume = {27}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddx429}, pages = {742 -- 756}, year = {2018}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P< 5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @misc{BeaumontWarringtonCavadinoetal.2017, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-M{\o}ller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, {\O}yvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Nj{\o}lstad, Pa ̊l R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Ja ̈rvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F.A. and S{\o}rensen, Thorkild I.A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hyppo ̈nen, Elina and Lowe, William L. , Jr and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {628}, issn = {1866-8372}, doi = {10.25932/publishup-42310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423100}, pages = {15}, year = {2017}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 {\^A} 10 {\`A}8 . In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @article{CohenCampisanoArrowsmithetal.2016, author = {Cohen, Andrew and Campisano, C. and Arrowsmith, J. Ram{\´o}n and Asrat, Asfawossen and Behrensmeyer, A. K. and Deino, A. and Feibel, C. and Hill, A. and Johnson, R. and Kingston, J. and Lamb, Henry F. and Lowenstein, T. and Noren, A. and Olago, D. and Owen, R. B. and Potts, R. and Reed, Kate and Renaut, R. and Sch{\"a}bitz, Frank and Tiercelin, J. -J. and Trauth, Martin H. and Wynn, J. and Ivory, S. and Brady, K. and Rodysill, J. and Githiri, J. and Russell, J. and F{\"o}rster, Verena and Dommain, Ren{\´e} and Rucina, S. and Deocampo, D. and Russell, J. and Billingsley, A. and Beck, C. and Dorenbeck, G. and Dullo, L. and Feary, D. and Garello, D. and Gromig, R. and Johnson, T. and Junginger, A. and Karanja, M. and Kimburi, E. and Mbuthia, A. and McCartney, T. and McNulty, E. and Muiruri, V. and Nambiro, E. and Negash, E. W. and Njagi, D. and Wilson, J. N. and Rabideaux, N. and Raub, T. and Sier, M. J. and Smith, P. and Urban, J. and Warren, M. and Yadeta, M. and Yost, C. and Zinaye, B.}, title = {The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits}, series = {Scientific Drilling}, volume = {21}, journal = {Scientific Drilling}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-21-1-2016}, pages = {1 -- 16}, year = {2016}, abstract = {The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.}, language = {en} } @article{HorikoshiYaghootkarMookKanamorietal.2013, author = {Horikoshi, Momoko and Yaghootkar, Hanieh and Mook-Kanamori, Dennis O. and Sovio, Ulla and Taal, H. Rob and Hennig, Branwen J. and Bradfield, Jonathan P. and St Pourcain, Beate and Evans, David M. and Charoen, Pimphen and Kaakinen, Marika and Cousminer, Diana L. and Lehtimaki, Terho and Kreiner-Moller, Eskil and Warrington, Nicole M. and Bustamante, Mariona and Feenstra, Bjarke and Berry, Diane J. and Thiering, Elisabeth and Pfab, Thiemo and Barton, Sheila J. and Shields, Beverley M. and Kerkhof, Marjan and van Leeuwen, Elisabeth M. and Fulford, Anthony J. and Kutalik, Zoltan and Zhao, Jing Hua and den Hoed, Marcel and Mahajan, Anubha and Lindi, Virpi and Goh, Liang-Kee and Hottenga, Jouke-Jan and Wu, Ying and Raitakari, Olli T. and Harder, Marie N. and Meirhaeghe, Aline and Ntalla, Ioanna and Salem, Rany M. and Jameson, Karen A. and Zhou, Kaixin and Monies, Dorota M. and Lagou, Vasiliki and Kirin, Mirna and Heikkinen, Jani and Adair, Linda S. and Alkuraya, Fowzan S. and Al-Odaib, Ali and Amouyel, Philippe and Andersson, Ehm Astrid and Bennett, Amanda J. and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Dallongeville, Jean and Das, Shikta and de Geus, Eco J. C. and Estivill, Xavier and Flexeder, Claudia and Froguel, Philippe and Geller, Frank and Godfrey, Keith M. and Gottrand, Frederic and Groves, Christopher J. and Hansen, Torben and Hirschhorn, Joel N. and Hofman, Albert and Hollegaard, Mads V. and Hougaard, David M. and Hyppoenen, Elina and Inskip, Hazel M. and Isaacs, Aaron and Jorgensen, Torben and Kanaka-Gantenbein, Christina and Kemp, John P. and Kiess, Wieland and Kilpelainen, Tuomas O. and Klopp, Norman and Knight, Bridget A. and Kuzawa, Christopher W. and McMahon, George and Newnham, John P. and Niinikoski, Harri and Oostra, Ben A. and Pedersen, Louise and Postma, Dirkje S. and Ring, Susan M. and Rivadeneira, Fernando and Robertson, Neil R. and Sebert, Sylvain and Simell, Olli and Slowinski, Torsten and Tiesler, Carla M. T. and Toenjes, Anke and Vaag, Allan and Viikari, Jorma S. and Vink, Jacqueline M. and Vissing, Nadja Hawwa and Wareham, Nicholas J. and Willemsen, Gonneke and Witte, Daniel R. and Zhang, Haitao and Zhao, Jianhua and Wilson, James F. and Stumvoll, Michael and Prentice, Andrew M. and Meyer, Brian F. and Pearson, Ewan R. and Boreham, Colin A. G. and Cooper, Cyrus and Gillman, Matthew W. and Dedoussis, George V. and Moreno, Luis A. and Pedersen, Oluf and Saarinen, Maiju and Mohlke, Karen L. and Boomsma, Dorret I. and Saw, Seang-Mei and Lakka, Timo A. and Koerner, Antje and Loos, Ruth J. F. and Ong, Ken K. and Vollenweider, Peter and van Duijn, Cornelia M. and Koppelman, Gerard H. and Hattersley, Andrew T. and Holloway, John W. and Hocher, Berthold and Heinrich, Joachim and Power, Chris and Melbye, Mads and Guxens, Monica and Pennell, Craig E. and Bonnelykke, Klaus and Bisgaard, Hans and Eriksson, Johan G. and Widen, Elisabeth and Hakonarson, Hakon and Uitterlinden, Andre G. and Pouta, Anneli and Lawlor, Debbie A. and Smith, George Davey and Frayling, Timothy M. and McCarthy, Mark I. and Grant, Struan F. A. and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Timpson, Nicholas J. and Prokopenko, Inga and Freathy, Rachel M.}, title = {New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism}, series = {Nature genetics}, volume = {45}, journal = {Nature genetics}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, organization = {MAGIC, Early Growth Genetics EGG}, issn = {1061-4036}, doi = {10.1038/ng.2477}, pages = {76 -- U115}, year = {2013}, abstract = {Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood(1). Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits(2). In an expanded genome-wide association metaanalysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.}, language = {en} } @article{ChipmanFerrierBrenaetal.2014, author = {Chipman, Ariel D. and Ferrier, David E. K. and Brena, Carlo and Qu, Jiaxin and Hughes, Daniel S. T. and Schroeder, Reinhard and Torres-Oliva, Montserrat and Znassi, Nadia and Jiang, Huaiyang and Almeida, Francisca C. and Alonso, Claudio R. and Apostolou, Zivkos and Aqrawi, Peshtewani and Arthur, Wallace and Barna, Jennifer C. J. and Blankenburg, Kerstin P. and Brites, Daniela and Capella-Gutierrez, Salvador and Coyle, Marcus and Dearden, Peter K. and Du Pasquier, Louis and Duncan, Elizabeth J. and Ebert, Dieter and Eibner, Cornelius and Erikson, Galina and Evans, Peter D. and Extavour, Cassandra G. and Francisco, Liezl and Gabaldon, Toni and Gillis, William J. and Goodwin-Horn, Elizabeth A. and Green, Jack E. and Griffiths-Jones, Sam and Grimmelikhuijzen, Cornelis J. P. and Gubbala, Sai and Guigo, Roderic and Han, Yi and Hauser, Frank and Havlak, Paul and Hayden, Luke and Helbing, Sophie and Holder, Michael and Hui, Jerome H. L. and Hunn, Julia P. and Hunnekuhl, Vera S. and Jackson, LaRonda and Javaid, Mehwish and Jhangiani, Shalini N. and Jiggins, Francis M. and Jones, Tamsin E. and Kaiser, Tobias S. and Kalra, Divya and Kenny, Nathan J. and Korchina, Viktoriya and Kovar, Christie L. and Kraus, F. Bernhard and Lapraz, Francois and Lee, Sandra L. and Lv, Jie and Mandapat, Christigale and Manning, Gerard and Mariotti, Marco and Mata, Robert and Mathew, Tittu and Neumann, Tobias and Newsham, Irene and Ngo, Dinh N. and Ninova, Maria and Okwuonu, Geoffrey and Ongeri, Fiona and Palmer, William J. and Patil, Shobha and Patraquim, Pedro and Pham, Christopher and Pu, Ling-Ling and Putman, Nicholas H. and Rabouille, Catherine and Ramos, Olivia Mendivil and Rhodes, Adelaide C. and Robertson, Helen E. and Robertson, Hugh M. and Ronshaugen, Matthew and Rozas, Julio and Saada, Nehad and Sanchez-Gracia, Alejandro and Scherer, Steven E. and Schurko, Andrew M. and Siggens, Kenneth W. and Simmons, DeNard and Stief, Anna and Stolle, Eckart and Telford, Maximilian J. and Tessmar-Raible, Kristin and Thornton, Rebecca and van der Zee, Maurijn and von Haeseler, Arndt and Williams, James M. and Willis, Judith H. and Wu, Yuanqing and Zou, Xiaoyan and Lawson, Daniel and Muzny, Donna M. and Worley, Kim C. and Gibbs, Richard A. and Akam, Michael and Richards, Stephen}, title = {The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima}, series = {PLoS biology}, volume = {12}, journal = {PLoS biology}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1002005}, pages = {24}, year = {2014}, abstract = {Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.}, language = {en} } @article{NeugebauerSchwabWaldmannetal.2016, author = {Neugebauer, I. and Schwab, M. J. and Waldmann, N. D. and Tjallingii, Rik and Frank, U. and Hadzhiivanova, E. and Naumann, R. and Taha, N. and Agnon, A. and Enzel, Y. and Brauer, Achim}, title = {Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-12-75-2016}, pages = {75 -- 90}, year = {2016}, abstract = {The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.}, language = {en} } @article{SramaKempfMoragasKlostermeyeretal.2006, author = {Srama, Ralf and Kempf, S. and Moragas-Klostermeyer, Georg and Helfert, S. and Ahrens, T. J. and Altobelli, N. and Auer, S. and Beckmann, U. and Bradley, J. G. and Burton, M. and Dikarev, V. V. and Economou, T. and Fechtig, H. and Green, S. F. and Grande, M. and Havnes, O. and Hillierf, J.K. and Horanyii, M. and Igenbergsj, E. and Jessberger, E. K. and Johnson, T. V. and Kr{\"u}ger, H. and Matt, G. and McBride, N. and Mocker, A. and Lamy, P. and Linkert, D. and Linkert, G. and Lura, F. and McDonnell, J.A.M. and M{\"o}hlmann, D. and Morfill, G. E. and Postberg, F. and Roy, M. and Schwehm, G.H. and Spahn, Frank and Svestka, J. and Tschernjawski, V. and Tuzzolino, A. J. and W{\"a}sch, R. and Gr{\"u}n, E.}, title = {In situ dust measurements in the inner Saturnian system}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.021}, pages = {967 -- 987}, year = {2006}, abstract = {In July 2004 the Cassini-Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3.}, language = {en} } @article{SchellerKleinjungBieretal.1998, author = {Scheller, Frieder W. and Kleinjung, Frank and Bier, Frank Fabian and Markower, Alexander and Neumann, Barbara and Wollenberger, Ursula and Kurochkin, Iliya N. and Eremenko, Arkadi V. and Barmin, Anatoli V. and Klußmann, Sven and F{\"u}rste, Jens-Peter and Erdmann, Volker A. and Mansuy, D.}, title = {New recognition elements in biosensing}, year = {1998}, language = {en} } @misc{SendGillesCoddetal.2018, author = {Send, T. S. and Gilles, M. and Codd, V. and Wolf, I. A. C. and Bardtke, S. and Streit, Fabian and Strohmaier, Jana and Frank, Josef and Schendel, D. and Sutterlin, M. W. and Denniff, M. and Laucht, Manfred and Samani, N. J. and Deuschle, Michael and Rietschel, Marcella and Witt, Stephanie H.}, title = {Telomere length in newborns is related to maternal stress during pregnancy Response}, series = {Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology}, volume = {43}, journal = {Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {0893-133X}, doi = {10.1038/s41386-018-0079-8}, pages = {2164 -- 2164}, year = {2018}, language = {en} } @article{FuchsGrosseStraussetal.2018, author = {Fuchs, Matthias and Grosse, Guido and Strauss, Jens and G{\"u}nther, Frank and Grigoriev, Mikhail N. and Maximov, Georgy M. and Hugelius, Gustaf}, title = {Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-953-2018}, pages = {953 -- 971}, year = {2018}, abstract = {Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m(-2) and 1.8 kg N m(-2) and for Bykovsky Peninsula 25.9 kg C m(-2) and 2.2 kg N m(-2). Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holoceneage cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr(-1) suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by similar to 5.8 Tg (13.2 kg C m(-2)). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.}, language = {en} } @misc{FuchsGrosseStraussetal.2018, author = {Fuchs, Matthias and Grosse, Guido and Strauss, Jens and G{\"u}nther, Frank and Grigoriev, Mikhail N. and Maximov, Georgy M. and Hugelius, Gustaf}, title = {Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {15}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {654}, issn = {1866-8372}, doi = {10.25932/publishup-41802}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418026}, pages = {19}, year = {2018}, abstract = {Ice-rich yedoma-dominated landscapes store con- siderable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and anal- ysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced under- standing of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m -2 and 1.8 kg N m -2 and for Bykovsky Penin- sula 25.9 kg C m -2 and 2.2 kg N m -2 . Radiocarbon dating demonstrates the Holocene age of thermokarst basin de- posits but also suggests the presence of thick Holocene- age cover layers which can reach up to 2 m on top of in- tact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr -1 suggest sustained mineral soil accu- mulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumu- lation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a sea- sonally thawed state in the two study areas by ∼ 5.8 Tg (13.2 kg C m -2 ). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice- rich yedoma and thermokarst environments in order to ac- count for high variability of permafrost and thermokarst en- vironments in pan-permafrost soil C and N pool estimates.}, language = {en} } @article{RueferGerhauserFranketal.2005, author = {Ruefer, Corinna E. and Gerhauser, C. and Frank, N. and Becker, Hans and Kulling, Sabine E.}, title = {In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases}, issn = {1613-4125}, year = {2005}, abstract = {Xanthohumol (XN) is the principal prenylated flavonoid of the hop plant and has recently gained considerable interest due to its potential cancer-chemopreventive effects. However, the metabolism of XN has not yet been investigated in detail. Therefore, we studied the in vitro phase 11 metabolism of XN using nine human recombinant UDP- glucuronosyltransferases (UGT) and five sulfotransferases (SULT). The identification of the metabolites formed was elucidated using HPLC with diode array detection as well as HPLC/API-ES MS. XN was efficiently glucuronidated by UGT 1A8, 1A9, and 1A10; further important UGTs were UGT 1A1, 1A7, and 2B7. With respect to the sulfation reaction, SULT 1A1*2, 1A2, and 1E1 were the most active SULT forms. UGT 1A3, 1A4, and 1A6 as well as SULT 1A3 and 2A1 were of minor importance for the conjugation of XN. Three mono-glucuronides as well as three mono-sulfates were identified. Considering the tissue distribution of the tested UGT and SULT enzyme forms, these findings suggest a prominent role for the glucuronidation and sulfation of XN in the liver as well as in the gastrointestinal tract}, language = {en} } @article{AlmeidaSanaTayloretal.2017, author = {Almeida, Leonardo A. and Sana, H. and Taylor, W. and Barb{\´a}, Rodolfo and Bonanos, Alceste Z. and Crowther, Paul and Damineli, Augusto and de Koter, A. and de Mink, Selma E. and Evans, C. J. and Gieles, Mark and Grin, Nathan J. and H{\´e}nault-Brunet, V. and Langer, Norbert and Lennon, D. and Lockwood, Sean and Ma{\´i}z Apell{\´a}niz, Jes{\´u}s and Moffat, A. F. J. and Neijssel, C. and Norman, C. and Ram{\´i}rez-Agudelo, O. H. and Richardson, N. D. and Schootemeijer, Abel and Shenar, Tomer and Soszyński, Igor and Tramper, Frank and Vink, J. S.}, title = {The tarantula massive binary monitoring}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {598}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629844}, pages = {36}, year = {2017}, abstract = {Context: Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z ~ 0.5 Z⊙.}, language = {en} } @article{SchellerMakowerGhindilisetal.1995, author = {Scheller, Frieder W. and Makower, Alexander and Ghindilis, A. L. and Bier, Frank Fabian and Ehrentreich-F{\"o}rster, Eva and Wollenberger, Ursula and Bauer, Christian G. and Micheel, Burkhard and Pfeiffer, Dorothea and Szeponik, Jan and Michael, N. and Kaden, H.}, title = {Enzyme sensors for subnanomolar concentrations}, year = {1995}, language = {en} } @article{BrumaSavaMerceretal.1998, author = {Bruma, Maria and Sava, Ion and Mercer, Frank W. and Reddy, Victor N. and K{\"o}pnick, Thomas and Stiller, Burkhard and Schulz, Burkhard}, title = {Silicon-containing poly(amide-ether)s}, year = {1998}, abstract = {New aromatic poly(amide-ether)s (II) have been synthesized by solution polycondensation of various aromatic diamines having two ether bridges (I) with a diacid chloride containing silicon, namely bis(chlorocarbonylphenyl)- diphenyIsilane. These polymers are easy soluble in polar amidic solvents such as N-methylpyrrolidinone or dimethylformamide and can be cast into thin flexible films or coatings from such solutions. They show high thermal stability with initial decomposition temperature being above 400 °C. Their glass transition temperatures lie in the range of 220-250 °C, except for polymer He which did not show a clear Tg when heated in a differential scanning calorimetry experiment up to 300 °C. The large interval between the glass transition and decomposition temperatures of pnlymers Ia-Id could be advantageous for their processing via compression molding. The polymer coatings deposited by the spincoating, technique onto silicon wafers showed a very smooth, pinhole-free surface in atomic force microscopy investigations. The free-standing films of 20-30 mm thickness show low dielectric constant, in the range of 3.65-3.78, which is promising for future application as high performance dielectrics.}, language = {en} } @article{KeutschFoersterStanleyetal.2009, author = {Keutsch, Frank N. and F{\"o}rster, Hans-J{\"u}rgen and Stanley, Chris J. and Rhede, Dieter}, title = {The discreditation of hastite, the orthorhombic dimorph of CoSe2, and observations on trogtalite, cubic CoSe2, from the type locality}, issn = {0008-4476}, doi = {10.3749/canmin.47.4.969}, year = {2009}, abstract = {"Hastite", the orthorhombic dimorph of CoSe2, formerly considered as a valid mineral species occurring in the Trogtal quarries, Harz Mountains, Germany, is discredited as being identical with ferroselite, orthorhombic FeSe2. The discreditation has been unanimously approved by the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) (IMA No. 07-E). We also provide observations on the composition, homogeneity, and origin of trogtalite (cubic CoSe2) from its type locality.}, language = {en} } @article{BelschakDenHartogFay2010, author = {Belschak, Frank D. and Den Hartog, Deanne N. and Fay, Doris}, title = {Exploring positive, negative and context-dependent aspects of proactive behaviours at work}, issn = {0963-1798}, doi = {10.1348/096317910x501143}, year = {2010}, abstract = {This article is an introduction to the Special Section entitled 'Exploring positive, negative and context- dependent aspects of proactive behaviours at work' which features in this issue of Journal of Occupational and Organizational Psychology.}, language = {en} } @article{SramaKruegerYamaguchietal.2012, author = {Srama, Ralf and Krueger, H. and Yamaguchi, T. and Stephan, T. and Burchell, M. and Kearsley, A. T. and Sterken, V. and Postberg, F. and Kempf, S. and Gr{\"u}n, Eberhard and Altobelli, Nicolas and Ehrenfreund, P. and Dikarev, V. and Horanyi, M. and Sternovsky, Zoltan and Carpenter, J. D. and Westphal, A. and Gainsforth, Z. and Krabbe, A. and Agarwal, Jessica and Yano, H. and Blum, J. and Henkel, H. and Hillier, J. and Hoppe, P. and Trieloff, M. and Hsu, S. and Mocker, A. and Fiege, K. and Green, S. F. and Bischoff, A. and Esposito, F. and Laufer, R. and Hyde, T. W. and Herdrich, G. and Fasoulas, S. and Jaeckel, A. and Jones, G. and Jenniskens, P. and Khalisi, E. and Moragas-Klostermeyer, Georg and Spahn, Frank and Keller, H. U. and Frisch, P. and Levasseur-Regourd, A. C. and Pailer, N. and Altwegg, K. and Engrand, C. and Auer, S. and Silen, J. and Sasaki, S. and Kobayashi, M. and Schmidt, J. and Kissel, J. and Marty, B. and Michel, P. and Palumbo, P. and Vaisberg, O. and Baggaley, J. and Rotundi, A. and Roeser, H. P.}, title = {SARIM PLUS-sample return of comet 67P/CG and of interstellar matter}, series = {EXPERIMENTAL ASTRONOMY}, volume = {33}, journal = {EXPERIMENTAL ASTRONOMY}, number = {2-3}, publisher = {SPRINGER}, address = {DORDRECHT}, issn = {0922-6435}, doi = {10.1007/s10686-011-9285-7}, pages = {723 -- 751}, year = {2012}, abstract = {The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition()) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission.}, language = {en} } @article{SpahnVieiraNetoGuimaraesetal.2014, author = {Spahn, Frank and Vieira Neto, E. and Guimaraes, A. H. F. and Gorban, A. N. and Brilliantov, Nikolai V.}, title = {A statistical model of aggregate fragmentation}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/1/013031}, pages = {11}, year = {2014}, abstract = {A statistical model of fragmentation of aggregates is proposed, based on the stochastic propagation of cracks through the body. The propagation rules are formulated on a lattice and mimic two important features of the process-a crack moves against the stress gradient while dissipating energy during its growth. We perform numerical simulations of the model for two-dimensional lattice and reveal that the mass distribution for small-and intermediate-size fragments obeys a power law, F(m) proportional to m(-3/2), in agreement with experimental observations. We develop an analytical theory which explains the detected power law and demonstrate that the overall fragment mass distribution in our model agrees qualitatively with that one observed in experiments.}, language = {en} } @article{MuellerNordhornMuckelbauerEnglertetal.2014, author = {Mueller-Nordhorn, Jacqueline and Muckelbauer, Rebecca and Englert, Heike and Grittner, Ulrike and Berger, Hendrike and Sonntag, Frank and V{\"o}ller, Heinz and Prugger, Christof and Wegscheider, Karl and Katus, Hugo A. and Willich, Stefan N.}, title = {Longitudinal association between body mass index and health-related quality of life}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0093071}, pages = {10}, year = {2014}, abstract = {Objective: Health-related quality of life (HRQoL) is an important outcome in individuals with a high risk for cardiovascular diseases. We investigated the association of HRQoL and body mass index (BMI) as an indicator for obesity. Design: Secondary longitudinal analysis of the ORBITAL study, an intervention study which included high-risk cardiovascular primary care patients with hypercholesterolemia and an indication for statin therapy. Methods: HRQoL was determined with the generic Short Form (SF)-12 health status instrument. Body weight and height were assessed at baseline and at months 6, 12, 18, 24, 30, and 36. We used a linear and a linear mixed-effects regression model to investigate the association between BMI and SF-12 summary scores at baseline as well as between change in BMI and SF-12 summary scores over 3 years. We adjusted for age, sex, smoking status, and in the longitudinal analysis also for the study arm and its interaction term with time. Results: Of the 7640 participants who completed the baseline questionnaire, 6726 participants (mean age: 61 years) were analyzed. The baseline BMI was inversely associated with physical and mental SF-12 summary scores (beta [95\% CI] per 1 kg/ m(2) : -0.36 [-0.41; -0.30] and -0.05 [-0.11; -0.00], respectively). A significant association between the change in BMI and physical SF-12 summary scores over time was only present in women (-0.18 [-0.27; -0.09]) and only in obese participants (-0.19 [-0.29; -0.10]). A change in BMI was directly associated with mental SF-12 summary scores (0.12 [0.06; 0.19]) in the total population. Conclusion: Increases in BMI were associated with decreases in physical HRQoL, particularly in obese individuals and in women. In contrast, the mental HRQoL seemed to increase with increasing BMI over time. Thus, body weight management with respect to the HRQoL should be evaluated differentially by sex and body weight status.}, language = {en} } @article{TrauthBergnerFoersteretal.2015, author = {Trauth, Martin H. and Bergner, Andreas G. N. and Foerster, Verena and Junginger, Annett and Maslin, Mark A. and Sch{\"a}bitz, Frank}, title = {Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa}, series = {Journal of human evolution}, volume = {87}, journal = {Journal of human evolution}, publisher = {Elsevier}, address = {London}, issn = {0047-2484}, doi = {10.1016/j.jhevol.2015.03.011}, pages = {21 -- 31}, year = {2015}, abstract = {Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after similar to 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{NeugebauerSchwabWaldmannetal.2016, author = {Neugebauer, Ina and Schwab, M. J. and Waldmann, Nicolas D. and Tjallingii, Rik and Frank, U. and Hadzhiivanova, E. and Naumann, R. and Taha, N. and Agnon, Amotz and Enzel, Y. and Brauer, Achim}, title = {Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {549}, issn = {1866-8372}, doi = {10.25932/publishup-41187}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411879}, pages = {16}, year = {2016}, abstract = {The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.}, language = {en} } @article{DeichmannAnsorgeScherbaumetal.1999, author = {Deichmann, N. and Ansorge, J{\"o}rg and Scherbaum, Frank and Aschwanden, Andy and Bernadi, F. and Gudmundsson, Gudmundur Hilmar}, title = {Evidence for deep icequakes in an alpine glacier}, year = {1999}, language = {en} } @article{OhrnbergerWassermannScherbaumetal.1999, author = {Ohrnberger, Matthias and Wassermann, J{\"u}rgen and Scherbaum, Frank and Budi, E. N. and Gossler, J.}, title = {Detection and classification of seismic signals of volcanic origin at Mt. Merapi (Indonesia)}, year = {1999}, language = {en} } @article{ShenarRichardsonSablowskietal.2017, author = {Shenar, Tomer and Richardson, N. D. and Sablowski, Daniel P. and Hainich, Rainer and Sana, H. and Moffat, A. F. J. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Oskinova, Lida and Sander, Andreas Alexander Christoph and Tramper, Frank and Langer, Norbert and Bonanos, Alceste Z. and de Mink, Selma E. and Gr{\"a}fener, G. and Crowther, Paul and Vink, J. S. and Almeida, Leonardo A. and de Koter, A. and Barb{\´a}, Rodolfo and Herrero, A. and Ulaczyk, Krzysztof}, title = {The tarantula massive binary monitoring}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {598}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629621}, pages = {16}, year = {2017}, abstract = {We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M-circle dot, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0 : 78 and minimum masses of M-1 sin(3) i approximate to M-2 sin(3) i = 13 +/- 2 M-circle dot, with q = M-2/M-1 = 1.01 +/- 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 +/- 6 degrees). Our analysis thus implies M-1 = 53(-20)(+40) and M2 = 54(-20)(+40) M-circle dot, excluding M-1 > 300 M-circle dot. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of approximate to 80 M-circle dot and initial masses of M-i,M-1 approximate to 10(5) and M-i,M-2 approximate to 90 M-circle dot, consistent with the upper limits of our derived orbital masses, and would imply an age of approximate to 2.2 Myr.}, language = {en} } @article{MorgensternOverduinGuentheretal.2020, author = {Morgenstern, Anne and Overduin, Pier Paul and G{\"u}nther, Frank and Stettner, Samuel and Ramage, Justine and Schirrmeister, Lutz and Grigoriev, Mikhail N. and Grosse, Guido}, title = {Thermo-erosional valleys in Siberian ice-rich permafrost}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.2087}, pages = {59 -- 75}, year = {2020}, abstract = {Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex.}, language = {en} } @article{OpelMurtonWetterichetal.2019, author = {Opel, Thomas and Murton, Julian B. and Wetterich, Sebastian and Meyer, Hanno and Ashastina, Kseniia and G{\"u}nther, Frank and Grotheer, Hendrik and Mollenhauer, Gesine and Danilov, Petr P. and Boeskorov, Vasily and Savvinov, Grigoriy N. and Schirrmeister, Lutz}, title = {Past climate and continentality inferred from ice wedges at Batagay Highlands, interior Yakutia}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-15-1443-2019}, pages = {1443 -- 1461}, year = {2019}, abstract = {Ice wedges in the Yana Highlands of interior Yakutia - the most continental region of the Northern Hemisphere - were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean delta O-18 about -35 parts per thousand) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean delta O-18 about -29 parts per thousand) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex mean delta O-18 about -33 parts per thousand) and of the MIS 3-2 upper sand unit (mean delta O-18 from about -33 parts per thousand to -30 parts per thousand) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{MussonToroCoppersmithetal.2005, author = {Musson, R. M. W. and Toro, G. R. and Coppersmith, Kevin J. and Bommer, Julian J. and Deichmann, N. and Bungum, Hilmar and Cotton, Fabrice and Scherbaum, Frank and Slejko, Dario and Abrahamson, Norman A.}, title = {Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel}, year = {2005}, abstract = {The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{CasselCarlsohnFroehlichetal.2016, author = {Cassel, Michael and Carlsohn, Anja and Fr{\"o}hlich, Katja and John, Mareike and Riegels, N. and Mayer, Frank}, title = {Tendon Adaptation to Sport-specific Loading in Adolescent Athletes}, series = {International journal of sports medicine}, volume = {37}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0035-1559772}, pages = {159 -- 164}, year = {2016}, abstract = {Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (< 13; \&\#8805; 13 years) and 6 sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete's risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:<13: 5.4±0.7 mm/3.6±0.5 mm;\&\#8805;13: 5.3±0.7 mm/3.6±0.5 mm). In both age groups males presented higher tendon thickness than females (p<0.001). AT thickness was highest in ball sports/cyclists and lowest in controls (p\&\#8804;0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading.}, language = {en} } @article{TscheuschnerKaiserLisecetal.2022, author = {Tscheuschner, Georg and Kaiser, Melanie N. and Lisec, Jan and Beslic, Denis and Muth, Thilo and Kr{\"u}ger, Maren and Mages, Hans Werner and Dorner, Brigitte G. and Knospe, Julia and Schenk, J{\"o}rg A. and Sellrie, Frank and Weller, Michael G.}, title = {MALDI-TOF-MS-based identification of monoclonal murine Anti-SARS-CoV-2 antibodies within one hour}, series = {Antibodies}, volume = {11}, journal = {Antibodies}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4468}, doi = {10.3390/antib11020027}, pages = {22}, year = {2022}, abstract = {During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80\%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context.}, language = {en} } @article{CasselMuellerCarlsohnetal.2012, author = {Cassel, Michael and M{\"u}ller, Steffen and Carlsohn, Anja and Baur, Heiner and Jerusel, N. and Mayer, Frank}, title = {Intra- and interrater variability of sonographic investigations of patella and achilles tendons}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {26}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0031-1281839}, pages = {21 -- 26}, year = {2012}, abstract = {Background: Clinical examinations of tendon disorders routinely include ultrasound examinations, despite the fact that availability of data concerning validity criteria of these measurements are limited. The present study therefore aims to evaluate the reliability of measurements of Achilles- and Patella tendon diameter and in the detection of structural adaptations. Materials and Methods: In 14 healthy, recreationally active subjects both asymptomatic Achilles (AT) and patella tendons (PT) were measured twice by two examiners in a test-retest design. Besides the detection of anteroposterior (a.p.-) and mediolateral (m.l.-) diameters, areas of hypoechogenicity and neovascularisation were registered. Data were analysed descriptively with calculation of test-retest variability (TRV), intraclass-correlation coefficient (ICC) and Bland and Altman's plots with bias and 95\% limits of agreement (LOA). Results: Intra- and interrater differences of AT- and PT-a.p.-diameter varied from 0.2 - 1.2 mm, those of AT- and PT-m.l-diameter from 0.7-5.1 mm. Areas of hypoechogenicity were visible in 24\% of the tendons, while 15\% showed neovascularisations. Intrarater AT-a.p.-diameters showed sparse deviations (TRV 4.5-7.4\%; ICC 0.60-0.84; bias -0.05-0.07 mm; LOA-0.6-0.5 to -1.1 - 1.0 mm), while interrater AT- and PT-m.l.-diameters were highly variable (TRV 13.7-19.7\%; ICC 0.11-0.20; bias -1.4-4.3 mm; LOA-5.5-2.7 to -10.5 - 1.9 mm). Conclusion: Our results suggest that the measurement of AT- and PT-a.p.-diameters is a reliable parameter. In contrast, reproducibility of AT- and PT-m.l.-diameters is questionable. The study corroborates the presence of hypoechogenicity and neovascularisation in asymptomatic tendons.}, language = {de} } @article{SeboldNebeGarbusowetal.2017, author = {Sebold, Miriam and Nebe, Stephan and Garbusow, Maria and Guggenmos, Matthias and Schad, Daniel and Beck, Anne and Kuitunen-Paul, S{\"o}ren and Sommer, Christian and Frank, Robin and Neu, Peter and Zimmermann, Ulrich S. and Rapp, Michael A. and Smolka, Michael N. and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {82}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, publisher = {Elsevier}, address = {New York}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2017.04.019}, pages = {847 -- 856}, year = {2017}, abstract = {BACKGROUND: Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. METHODS: Ninety detoxified, medication-free, alcohol-dependent patients and 96 age-and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. RESULTS: Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. CONCLUSIONS: These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies.}, language = {en} } @article{SzymanskiToenniesBecheretal.2012, author = {Szymanski, Kolja V. and T{\"o}nnies, Mario and Becher, Anne and Fatykhova, Diana and N'Guessan, Philippe D. and Gutbier, Birgitt and Klauschen, Frederick and Neusch{\"a}fer-Rube, Frank and Schneider, Paul and R{\"u}ckert, Jens and Neudecker, Jens and Bauer, Torsten T. and Dalhoff, Klaus and Droemann, Daniel and Gruber, Achim D. and Kershaw, Olivia and Temmesfeld-Wollbrueck, Bettina and Suttorp, Norbert and Hippenstiel, Stefan and Hocke, Andreas C.}, title = {Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue}, series = {The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology}, volume = {40}, journal = {The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology}, number = {6}, publisher = {European Respiratory Society}, address = {Sheffield}, issn = {0903-1936}, doi = {10.1183/09031936.00186911}, pages = {1458 -- 1467}, year = {2012}, abstract = {The majority of cases of community-acquired pneumonia are caused by Streptococcus pneumoniae and most studies on pneumococcal host interaction are based on cell culture or animal experiments. Thus, little is known about infections in human lung tissue. Cyclooxygenase-2 and its metabolites play an important regulatory role in lung inflammation. Therefore, we established a pneumococcal infection model on human lung tissue demonstrating mitogen-activated protein kinase (MAPK)-dependent induction of cyclooxygenase-2 and its related metabolites. In addition to alveolar macrophages and the vascular endothelium, cyclooxygenase-2 was upregulated in alveolar type II but not type I epithelial cells, which was confirmed in lungs of patients suffering from acute pneumonia. Moreover, we demonstrated the expression profile of all four E prostanoid receptors at the mRNA level and showed functionality of the E prostanoid(4) receptor by cyclic adenosine monophosphate production. Additionally, in comparison to previous studies, cyclooxygenase-2/prostaglandin E-2 related pro- and anti-inflammatory mediator regulation was partly confirmed in human lung tissue after pneumococcal infection. Overall, cell type-specific and MAPK-dependent cyclooxygenase-2 expression and prostaglandin E-2 formation in human lung tissue may play an important role in the early phase of pneumococcal infections.}, language = {en} }