@misc{KuehnSorgenfreiGiangrisostomietal.2018, author = {K{\"u}hn, Danilo and Sorgenfrei, Florian and Giangrisostomi, Erika and Jay, Raphael Martin and Musazayb, Abdurrahman and Ovsyannikov, Ruslan and Str{\aa}hlman, Christian and Svensson, Svante and M{\aa}rtensson, Nils and F{\"o}hlisch, Alexander}, title = {Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {782}, issn = {1866-8372}, doi = {10.25932/publishup-43662}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436629}, pages = {45 -- 50}, year = {2018}, abstract = {The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V.}, language = {en} } @misc{SchaeferKakularamReischetal.2022, author = {Sch{\"a}fer, Marj{\"a}nn Helena and Kakularam, Kumar Reddy and Reisch, Florian and Rothe, Michael and Stehling, Sabine and Heydeck, Dagmar and P{\"u}schel, Gerhard Paul and Kuhn, Hartmut}, title = {Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1295}, issn = {1866-8372}, doi = {10.25932/publishup-57649}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576491}, pages = {22}, year = {2022}, abstract = {Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.}, language = {en} }