@misc{AnguenerAharonianBordasetal.2017, author = {Ang{\"u}ner, Ekrem Oǧuzhan and Aharonian, Felix A. and Bordas, Pol and Casanova, Sabrina and Hoischen, Clemens and Oya, I. and Ziegler, A.}, title = {HESS J1826-130}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968928}, pages = {6}, year = {2017}, abstract = {HESS J1826-130 is an unidentified hard spectrum source discovered by H.E.S.S. along the Galactic plane, the spectral index being Gamma = 1.6 with an exponential cut-off at about 12 TeV. While the source does not have a clear counterpart at longer wavelengths, the very hard spectrum emission at TeV energies implies that electrons or protons accelerated up to several hundreds of TeV are responsible for the emission. In the hadronic case, the VHE emission can be produced by runaway cosmic-rays colliding with the dense molecular clouds spatially coincident with the H.E.S.S. source.}, language = {en} } @inproceedings{ReimerAharonianHintonetal.2007, author = {Reimer, O. and Aharonian, Felix A. and Hinton, J. and Hofmann, W. and Hoppe, S. and Raue, M. and Reimer, A.}, title = {VHE gamma-rays from Westerlund 2 and implications for the inferred energetics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18172}, year = {2007}, abstract = {The H.E.S.S. collaboration recently reported the discovery of VHE γ-ray emission coincident with the young stellar cluster Westerlund 2. This system is known to host a population of hot, massive stars, and, most particularly, the WR binary WR 20a. Particle acceleration to TeV energies in Westerlund 2 can be accomplished in several alternative scenarios, therefore we only discuss energetic constraints based on the total available kinetic energy in the system, the actual mass loss rates of respective cluster members, and implied gamma-ray production from processes such as inverse Compton scattering or neutral pion decay. From the inferred gammaray luminosity of the order of 1035erg/s, implications for the efficiency of converting available kinetic energy into non-thermal radiation associated with stellar winds in the Westerlund 2 cluster are discussed under consideration of either the presence or absence of wind clumping.}, language = {en} } @article{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Monthly Notices of the Royal Astronomical Society}, volume = {494}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, pages = {13}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} } @misc{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526000}, pages = {15}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} }