@article{BommerAbrahamsonStrasseretal.2004, author = {Bommer, Julian J. and Abrahamson, Norman A. and Strasser, F. O. and Pecker, Alain and Bard, Pierre-Yves and Bungum, Hilmar and Cotton, Fabrice and F{\"a}h, Donat and Sabetta, F. and Scherbaum, Frank and Studer, Jost}, title = {The challenge of defining upper bounds on earthquake ground motions}, issn = {0895-0695}, year = {2004}, language = {en} } @article{ScherbaumCottonSmit2004, author = {Scherbaum, Frank and Cotton, Fabrice and Smit, P.}, title = {On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity : the case of rock motion}, issn = {0037-1106}, year = {2004}, abstract = {The use of ground-motion-prediction equations to estimate ground shaking has become a very popular approach for seismic-hazard assessment, especially in the framework of a logic-tree approach. Owing to the large number of existing published ground-motion models, however, the selection and ranking of appropriate models for a particular target area often pose serious practical problems. Here we show how observed around-motion records can help to guide this process in a systematic and comprehensible way. A key element in this context is a new, likelihood based, goodness-of-fit measure that has the property not only to quantify the model fit but also to measure in some degree how well the underlying statistical model assumptions are met. By design, this measure naturally scales between 0 and 1, with a value of 0.5 for a situation in which the model perfectly matches the sample distribution both in terms of mean and standard deviation. We have used it in combination with other goodness-of-fit measures to derive a simple classification scheme to quantify how well a candidate ground-rnotion-prediction equation models a particular set of observed-response spectra. This scheme is demonstrated to perform well in recognizing a number of popular ground-motion models from their rock-site- recording, subsets. This indicates its potential for aiding the assignment of logic-tree weights in a consistent and reproducible way. We have applied our scheme to the border region of France, Germany, and Switzerland where the M-w 4.8 St. Die earthquake of 22 February 2003 in eastern France recently provided a small set of observed-response spectra. These records are best modeled by the ground-motion-prediction equation of Berge-Thierry et al. (2003), which is based on the analysis of predominantly European data. The fact that the Swiss model of Bay et al. (2003) is not able to model the observed records in an acceptable way may indicate general problems arising from the use of weak-motion data for strong-motion prediction}, language = {en} } @article{ScherbaumSchmedesCotton2004, author = {Scherbaum, Frank and Schmedes, J. and Cotton, Fabrice}, title = {On the conversion of source-to-site distance measures for extended earthquake source models}, issn = {0037-1106}, year = {2004}, abstract = {One of the major challenges in engineering seismology is the reliable prediction of site-specific ground motion for particular earthquakes, observed at specific distances. For larger events, a special problem arises, at short distances, with the source-to-site distance measure, because distance metrics based on a point-source model are no longer appropriate. As a consequence, different attenuation relations differ in the distance metric that they use. In addition to being a source of confusion, this causes problems to quantitatively compare or combine different ground- motion models; for example, in the context of Probabilistic Seismic Hazard Assessment, in cases where ground-motion models with different distance metrics occupy neighboring branches of a logic tree. In such a situation, very crude assumptions about source sizes and orientations often have to be used to be able to derive an estimate of the particular metric required. Even if this solves the problem of providing a number to put into the attenuation relation, a serious problem remains. When converting distance measures, the corresponding uncertainties map onto the estimated ground motions according to the laws of error propagation. To make matters worse, conversion of distance metrics can cause the uncertainties of the adapted ground-motion model to become magnitude and distance dependent, even if they are not in the original relation. To be able to treat this problem quantitatively, the variability increase caused by the distance metric conversion has to be quantified. For this purpose, we have used well established scaling laws to determine explicit distance conversion relations using regression analysis on simulated data. We demonstrate that, for all practical purposes, most popular distance metrics can be related to the Joyner-Boore distance using models based on gamma distributions to express the shape of some "residual function." The functional forms are magnitude and distance dependent and are expressed as polynomials. We compare the performance of these relations with manually derived individual distance estimates for the Landers, the Imperial Valley, and the Chi-Chi earthquakes}, language = {en} } @article{DerrasBardCotton2016, author = {Derras, Boumediene and Bard, Pierre-Yves and Cotton, Fabrice}, title = {Site-Condition Proxies, Ground Motion Variability, and Data-Driven GMPEs: Insights from the NGA-West2 and RESORCE Data Sets}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {32}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/060215EQS082M}, pages = {2027 -- 2056}, year = {2016}, abstract = {We compare the ability of various site-condition proxies (SCPs) to reduce the aleatory variability of ground motion prediction equations (GMPEs). Three SCPs (measured V-S30, inferred V-S30, local topographic slope) and two accelerometric databases (RESORCE and NGA-West2) are considered. An artificial neural network (ANN) approach including a random-effect procedure is used to derive GMPEs setting the relationship between peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration [PSA(T)], and explanatory variables (M-w, R-JB, and V-S30 or Slope). The analysis is performed using both discrete site classes and continuous proxy values. All "non-measured" SCPs exhibit a rather poor performance in reducing aleatory variability, compared to the better performance of measured V-S30. A new, fully data-driven GMPE based on the NGA-West2 is then derived, with an aleatory variability value depending on the quality of the SCP. It proves very consistent with previous GMPEs built on the same data set. Measuring V-S30 allows for benefit from an aleatory variability reduction up to 15\%.}, language = {en} } @article{BindiPicozziSpallarossaetal.2019, author = {Bindi, Dino and Picozzi, Matteo and Spallarossa, Daniele and Cotton, Fabrice and Kotha, Sreeram Reddy}, title = {Impact of Magnitude Selection on Aleatory Variability Associated with Ground-Motion Prediction Equations}, series = {Bulletin of the Seismological Society of America}, volume = {109}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120180239}, pages = {251 -- 262}, year = {2019}, abstract = {We derive a set of regional ground-motion prediction equations (GMPEs) in the Fourier amplitude spectra (FAS-GMPE) and in the spectral acceleration (SA-GMPE) domains for the purpose of interpreting the between-event residuals in terms of source parameter variability. We analyze a dataset of about 65,000 recordings generated by 1400 earthquakes (moment magnitude 2: 5 <= M-w <= 6: 5, hypocentral distance R-hypo <= 150 km) that occurred in central Italy between January 2008 and October 2017. In a companion article (Bindi, Spallarossa, et al., 2018), the nonparametric acceleration source spectra were interpreted in terms of omega-square models modified to account for deviations from a high-frequency flat plateau through a parameter named k(source). Here, the GMPEs are derived considering the moment (M-w), the local (M-L), and the energy (M-e) magnitude scales, and the between-event residuals are computed as random effects. We show that the between-event residuals for the FAS-GMPE implementing M-w are correlated with stress drop, with correlation coefficients increasing with increasing frequency up to about 10 Hz. Contrariwise, the correlation is weak for the FAS-GMPEs implementing M-L and M-e, in particular between 2 and 5 Hz, where most of the corner frequencies lie. At higher frequencies, all models show a strong correlation with k(source). The correlation with the source parameters reflects in a different behavior of the standard deviation tau of the between-event residuals with frequency. Although tau is smaller for the FAS-GMPE using M-w below 1.5 Hz, at higher frequencies, the model implementing either M-L or M-e shows smaller values, with a reduction of about 30\% at 3 Hz (i.e., from 0.3 for M-w to 0.1 for M-L). We conclude that considering magnitude scales informative for the stress-drop variability allows to reduce the between-event variability with a significant impact on the hazard assessment, in particular for studies in which the ergodic assumption on site is removed.}, language = {en} } @misc{JaraSanchezReyesSocquetetal.2018, author = {Jara, Jorge and S{\´a}nchez-Reyes, Hugo and Socquet, Anne and Cotton, Fabrice and Virieux, Jean and Maksymowicz, Andrei and D{\´i}az-Mojica, John and Walpersdorf, Andrea and Ruiz, Javier and Cotte, Nathalie and Norabuena, Edmundo}, title = {Corrigendum to: Kinematic study of Iquique 2014 Mw 8.1 earthquake: Understanding the segmentation of the seismogenic zone. - (Earth and planetary science letters. - 503 (2018) S. 131 - 143)}, series = {Earth and planetary science letters}, volume = {506}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.11.026}, pages = {347 -- 347}, year = {2018}, abstract = {We study the rupture processes of Iquique earthquake 8.1 (2014/04/01) and its largest aftershock 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 × 1021 Nm ( 8.1) and maximum slip of ∼9 m, while the aftershock model has a seismic moment of 3.88 × 1020 ( 7.7) and a maximum slip of ∼3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet.}, language = {en} } @article{KothaCottonBindi2019, author = {Kotha, Sreeram Reddy and Cotton, Fabrice and Bindi, Dino}, title = {Empirical models of shear-wave radiation pattern derived from large datasets of ground-shaking observations}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-37524-4}, pages = {11}, year = {2019}, abstract = {Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades' old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average. Today, using the large datasets of uniformly processed seismograms from several strike, normal, reverse, and oblique-slip earthquakes across the globe, compiled specifically for engineering applications, we could reveal, quantify, and calibrate the frequency-, distance-, and style-of-faulting dependent transition of shear-wave radiation between a stochastic-isotropic and a deterministic-anisotropic phenomenon. Consequent recalibration of empirical ground-shaking models dramatically improved their predictions: with isodistant anisotropic variations of ±40\%, and 8\% reduction in uncertainty. The outcomes presented here can potentially trigger a reappraisal of several practical issues in engineering seismology, particularly in seismic ground-shaking studies and seismic hazard and risk assessment.}, language = {en} } @article{BoraCottonScherbaum2019, author = {Bora, Sanjay Singh and Cotton, Fabrice and Scherbaum, Frank}, title = {NGA-West2 Empirical Fourier and Duration Models to Generate Adjustable Response Spectra}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {35}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {1}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {8755-2930}, doi = {10.1193/110317EQS228M}, pages = {61 -- 93}, year = {2019}, abstract = {Adjustment of median ground motion prediction equations (GMPEs) from one region to another region is one of the major challenges within the current practice of seismic hazard analysis. In our approach of generating response spectra, we derive two separate empirical models for a) Fourier amplitude spectrum (FAS) and b) duration of ground motion. To calculate response spectra, the two models are combined within the random vibration theory (RVT) framework. The models are calibrated on recordings obtained from shallow crustal earthquakes in active tectonic regions. We use a subset of NGA-West2 database with M3.2-7.9 earthquakes at distances 0-300 km. The NGA-West2 database expanded over a wide magnitude and distance range facilitates a better constraint over derived models. A frequency-dependent duration model is derived to obtain adjustable response spectral ordinates. Excellent comparison of our approach with other NGA-West2 models implies that it can also be used as a stand-alone model.}, language = {en} } @article{BindiCottonSpallarossaetal.2018, author = {Bindi, Dino and Cotton, Fabrice and Spallarossa, Daniele and Picozzi, Matteo and Rivalta, Eleonora}, title = {Temporal variability of ground shaking and stress drop in Central Italy}, series = {Bulletin of the Seismological Society of America}, volume = {108}, journal = {Bulletin of the Seismological Society of America}, number = {4}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120180078}, pages = {1853 -- 1863}, year = {2018}, abstract = {Ground-motion prediction equations (GMPEs) are calibrated to predict the intensity of ground shaking at any given location, based on earthquake magnitude, source-to-site distance, local soil amplifications, and other parameters. GMPEs are generally assumed to be independent of time; however, evidence is increasing that large earthquakes modify the shallow soil conditions and those of the fault zone for months or years. These changes may affect the intensity of shaking and result in time-dependent effects that can potentially be resolved by analyzing between-event residuals (residuals between observed and predicted ground motion for individual earthquakes averaged over all stations). Here, we analyze a data set of about 65,000 recordings for about 1400 earthquakes in the moment magnitude range 2.5-6.5 that occurred in central Italy from 2008 to 2017 to capture the temporal variability of the ground shaking at high frequency. We first compute between-event residuals for each earthquake in the Fourier domain with respect to a GMPE developed ad hoc for the analyzed data set. The between-events show large changes after the occurrence of mainshocks such as the 2009 Mw 6.3 L'Aquila, the 2016 Mw 6.2 Amatrice, and Mw 6.5 Norcia earthquakes. Within the time span of a few months after the mainshocks, the between-event contribution to the ground shaking varies by a factor 7. In particular, we find a large drop in the between-events in the aftermath of the L'Aquila earthquake, followed by a slow positive trend that leads to a recovery interrupted by a new drop at the beginning of 2014. We also quantify the frequency-dependent correlation between the Brune stress drop Δσ and the between-events. We find that the temporal changes of Δσ resemble those of the between-event residuals; in particular, during the period when the between-events show the positive trend, the average logarithm of Δσ increases with an annual rate of 0.19 (i.e., the amplification factor for Δσ is 1.56 per year). Breakpoint analysis located a change in the linear trend coefficients of Δσ versus time in February 2014, although no large earthquakes occurred at that time. Finally, the temporal variability of Δσ mirrors the relative seismic-velocity variations observed in previous studies for the same area and period, suggesting that both crack healing along the main fault system and healing of microcracks distributed at shallow depths throughout the surrounding region might be necessary to explain the wider observations of postearthquake recovery.}, language = {en} } @article{BoraCottonScherbaumetal.2017, author = {Bora, Sanjay Singh and Cotton, Fabrice and Scherbaum, Frank and Edwards, Benjamin and Traversa, Paola}, title = {Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {15}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-017-0167-x}, pages = {4531 -- 4561}, year = {2017}, abstract = {We have analyzed the recently developed pan-European strong motion database, RESORCE-2012: spectral parameters, such as stress drop (stress parameter, Delta sigma), anelastic attenuation (Q), near surface attenuation (kappa(0)) and site amplification have been estimated from observed strong motion recordings. The selected dataset exhibits a bilinear distance-dependent Q model with average kappa(0) value 0.0308 s. Strong regional variations in inelastic attenuation were also observed: frequency-independent Q(0) of 1462 and 601 were estimated for Turkish and Italian data respectively. Due to the strong coupling between Q and kappa(0), the regional variations in Q have strong impact on the estimation of near surface attenuation kappa(0). kappa(0) was estimated as 0.0457 and 0.0261 s for Turkey and Italy respectively. Furthermore, a detailed analysis of the variability in estimated kappa(0) revealed significant within-station variability. The linear site amplification factors were constrained from residual analysis at each station and site-class type. Using the regional Q(0) model and a site-class specific kappa(0), seismic moments (M-0) and source corner frequencies f (c) were estimated from the site corrected empirical Fourier spectra. Delta sigma did not exhibit magnitude dependence. The median Delta sigma value was obtained as 5.75 and 5.65 MPa from inverted and database magnitudes respectively. A comparison of response spectra from the stochastic model (derived herein) with that from (regional) ground motion prediction equations (GMPEs) suggests that the presented seismological parameters can be used to represent the corresponding seismological attributes of the regional GMPEs in a host-to-target adjustment framework. The analysis presented herein can be considered as an update of that undertaken for the previous Euro-Mediterranean strong motion database presented by Edwards and Fah (Geophys J Int 194(2):1190-1202, 2013a).}, language = {en} } @article{ZhuCottonPilz2020, author = {Zhu, Chuanbin and Cotton, Fabrice and Pilz, Marco}, title = {Detecting site resonant frequency using HVSR}, series = {Bulletin of the Seismological Society of America : BSSA}, volume = {110}, journal = {Bulletin of the Seismological Society of America : BSSA}, number = {2}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120190186}, pages = {427 -- 440}, year = {2020}, abstract = {In this investigation, we examine the uncertainties using the horizontal-to-vertical spectral ratio (HVSR) technique on earthquake recordings to detect site resonant frequencies at 207 KiK-net sites. Our results show that the scenario dependence of response (pseudospectral acceleration) spectral ratio could bias the estimates of resonant frequencies for sites having multiple significant peaks with comparable amplitudes. Thus, the Fourier amplitude spectrum (FAS) should be preferred in computing HVSR. For more than 80\% of the investigated sites, the first peak (in the frequency domain) on the average HVSR curve over multiple sites coincides with the highest peak. However, for sites with multiple peaks, the highest peak frequency (f(p)) is less susceptible to the selection criteria of significant peaks and the extent of smoothing to spectrum than the first peak frequency (f(0)). Meanwhile, in comparison to the surface-to-borehole spectral ratio, f(0) tends to underestimate the predominant frequency (at which the largest amplification occurs) more than f(p). In addition, in terms of characterizing linear site response, f(p) shows a better overall performance than f(0). Based on these findings, we thus recommend that seismic network operators provide f(p) on the average HVSRFAS curve as a priority, ideally together with the average HVSRFAS curve in site characterization.}, language = {en} } @misc{DahmHeimannFunkeetal.2018, author = {Dahm, Torsten and Heimann, Sebastian and Funke, Sigward and Wendt, Siegfried and Rappsilber, Ivo and Bindi, Dino and Plenefisch, Thomas and Cotton, Fabrice}, title = {Correction to: Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M approximate to 3 earthquakes in 2015 and 2017 (vol 22, pg 985, 2018)}, series = {Journal of seismology}, volume = {22}, journal = {Journal of seismology}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-018-9773-6}, pages = {1669 -- 1671}, year = {2018}, language = {en} } @article{MayorBoraCotton2018, author = {Mayor, Jessie and Bora, Sanjay Singh and Cotton, Fabrice}, title = {Capturing regional variations of hard-rock κ0 from coda analysis}, series = {The bulletin of the Seismological Society of America : BSSA}, volume = {108}, journal = {The bulletin of the Seismological Society of America : BSSA}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170153}, pages = {399 -- 408}, year = {2018}, abstract = {We propose an alternative procedure for the capture of the hard-rock regional kappa (⁠κ0ref⁠). In our approach, we make use of a potential link between the well-known κ parameter and the properties of coda waves. In our analysis, we consider near-distance records of four crustal earthquakes of local magnitude 3.7-4.9 that occurred in four regions of France in different geological contexts: the crystalline axial chain of Pyrenees to the southwest, the large sedimentary basin to the southeast, the Alpine range to the east, and the extensional Rhine graben to the northeast. Each earthquake has been recorded at a pair of nearby soft- and hard-rock station sites. The high-frequency (16-32 Hz) spectral amplitudes of the coda window (carefully selected on the time series of the accelerograms) confirm an exponential decrease, which we quantify by κAHcoda and call "kappa of coda." It is found that κAHcoda is independent of the soil type but shows significant regional variations. κ measurements (Anderson and Hough, 1984) over the coda window (⁠κAHcoda⁠) and full time series (⁠κAH⁠) show strong correlation at hard-rock sites. This suggests that κAHcoda can provide a new proxy to estimate the regional hard rock κ0ref (Ktenidou et al., 2015). Theoretical analysis is also presented to relate the regional κAHcoda and coda quality factor Qc⁠, which quantifies the average attenuation properties of the crust (both scattering and absorption). It allows interpreting κAHcoda as the time spent by the waves in the medium, weighted by its attenuation properties. This theoretical analysis also shows that the classical κ measurement should be frequency dependent; this was confirmed by the spectra of the observed records.}, language = {en} } @article{PinaValdesSocquetCottonetal.2018, author = {Pina-Valdes, Jesus and Socquet, Anne and Cotton, Fabrice and Specht, Sebastian}, title = {Spatiotemporal Variations of Ground Motion in Northern Chile before and after the 2014 M-w 8.1 Iquique Megathrust Event}, series = {Bulletin of the Seismological Society of America}, volume = {108}, journal = {Bulletin of the Seismological Society of America}, number = {2}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170052}, pages = {801 -- 814}, year = {2018}, abstract = {To evaluate the spatiotemporal variations of ground motions in northern Chile, we built a high-quality rock seismic acceleration database and an interface earthquakes catalog. Two ground-motion prediction equation (GMPE) models for subduction zones have been tested and validated for the area. They were then used as backbone models to describe the time-space variations of earthquake frequency content (Fourier and response spectra). Consistent with previous studies of large subduction earthquakes, moderate interface earthquakes in northern Chile show an increase of the high-frequency energy released with depth. A regional variability of earthquake frequency content is also observed, which may be related to a lateral segmentation of the mechanical properties of the subduction interface. Finally, interface earthquakes show a temporal evolution of their frequency content in the earthquake sequence associated with the 2014 Iquique M-w 8.1 megathrust earthquake. Surprisingly, the change does not occur with the mainshock but is associated with an 8 month slow slip preceding the megathrust. Electronic Supplement: Strong-motion database.}, language = {en} } @article{YepesAudinAlvaradoetal.2016, author = {Yepes, Hugo and Audin, Laurence and Alvarado, Alexandra and Beauval, Celine and Aguilar, Jorge and Font, Yvonne and Cotton, Fabrice}, title = {A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2015TC003941}, pages = {1249 -- 1279}, year = {2016}, abstract = {A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.}, language = {en} } @article{KothaBindiCotton2017, author = {Kotha, Sreeram Reddy and Bindi, Dino and Cotton, Fabrice}, title = {From Ergodic to Region- and Site-Specific Probabilistic Seismic Hazard Assessment: Method Development and Application at European and Middle Eastern Sites}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {33}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/081016EQS130M}, pages = {1433 -- 1453}, year = {2017}, abstract = {The increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors (delta S2S(s)) from the ground motion prediction equation (GMPE) residuals. The delta S2S(s) are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region-and site-specific PSHA methodology wherein, (1) site-to-site variability (phi(S2S)) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) delta S2S(s) at new sites with strong motion are estimated using the a priori phi(S2S), and (3) the GMPE site-specific single-site aleatory variability sigma(ss,s) is replaced with a generic site-corrected aleatory variability sigma(0). Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sites in Europe and Middle East shows an approximate 50\% difference in predicted ground motions over a range of hazard levels-a strong motivation to increase seismological monitoring of critical facilities and enrich regional ground motion data sets.}, language = {en} } @article{KothaBindiCotton2017, author = {Kotha, Sreeram Reddy and Bindi, Dino and Cotton, Fabrice}, title = {Site-Corrected Magnitude- and Region-Dependent Correlations of Horizontal Peak Spectral Amplitudes}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {33}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/091416EQS150M}, pages = {1415 -- 1432}, year = {2017}, abstract = {Empirical correlations of horizontal peak spectral amplitudes (PSA) are modeled using the total-residuals obtained in a ground motion prediction equation (GMPE) regression. Recent GMPEs moved toward partially non-ergodic region-and site-specific predictions, while the residual correlation models remained largely ergodic. Using mixed-effects regression, we decompose the total-residuals of a pan-European GMPE into between-event, between-site, and event-and-site corrected residuals to investigate the ergodicity in empirical PSA correlations. We first observed that the between-event correlations are magnitude-dependent, partially due to the differences in source spectra, and influence of stress-drop parameter on small and large events. Next, removing the between-site residuals from within-event residuals yields the event-and-site corrected residuals which are found to be region-dependent, possibly due to the regional differences in distance-decay of short period PSAs. Using our site-corrected magnitude- and region-dependent correlations, and the between-site residuals as empirical site-specific ground motion adjustments, we compute partially non-ergodic conditional mean spectra at four well-recorded sites in Europe and Middle Eastern regions.}, language = {en} } @article{LanzanoSgobbaLuzietal.2018, author = {Lanzano, Giovanni and Sgobba, Sara and Luzi, Lucia and Puglia, Rodolfo and Pacor, Francesca and Felicetta, Chiara and Cotton, Fabrice and Bindi, Dino}, title = {The pan-European Engineering Strong Motion (ESM) flatfile}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {17}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0480-z}, pages = {561 -- 582}, year = {2018}, abstract = {The Engineering Strong-Motion (ESM) flatfile is a parametric table which contains verified and reliable metadata and intensity measures of manually processed waveforms included in the ESM database. The flatfile has been developed within the Seismology Thematic Core Service of EPOS-IP (European Plate Observing System Implementation Phase) and it is disseminated throughout a web portal for research and technical purposes. The adopted criteria for flatfile compilation aim to collect strong motion data and related metadata in a uniform, updated, traceable and quality-checked way to develop Ground Motion Models (GMMs) for Probabilistic Seismic Hazard Assessment (PSHA) and engineering applications. In this paper, we present the characteristics of ESM flatfile in terms of recording, event and station distributions, and we discuss the most relevant features of the Intensity Measures (IMs) of engineering interest included in the table. The dataset for flatfile compilation includes 23,014 recordings from 2179 earthquakes and 2080 stations from Europe and Middle-East. The events are characterized by magnitudes in the range 3.5-8.0 and refer to different tectonics regimes, such as shallow active crustal and subduction zones. Intensity measures include peak and integral parameters and duration of each waveform. The spectral amplitudes of the (5\% damping) acceleration and displacement response are provided for 36 periods, in the interval 0.01-10 s, as well as the 103 amplitudes of the Fourier spectrum for the frequency range 0.04-50 Hz. Several statistics are shown with reference to the most significant metadata for GMMs calibrations, such as moment magnitude, focal depth, several distance metrics, style of faulting and parameters for site characterization. Furthermore, we also compare and explain the most relevant differences between the metadata of ESM flatfile with those provided by the previous flatfile derived in RESORCE (Reference Database for Seismic Ground Motion in Europe) project.}, language = {en} } @article{LilienkampvonSpechtWeatherilletal.2022, author = {Lilienkamp, Henning and von Specht, Sebastian and Weatherill, Graeme and Caire, Giuseppe and Cotton, Fabrice}, title = {Ground-Motion modeling as an image processing task}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {3}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120220008}, pages = {1565 -- 1582}, year = {2022}, abstract = {We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observations of a ground-motion intensity measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earthquake source and observation site coordinates, and is, therefore, well suited to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM between observation points is an inherent feature of the U-Net and requires no a priori assumptions. We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learning the magnitude???distance scaling, as well as site-, source-, and path-specific amplification effects from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation and is found to provide on average unbiased predictions. The magnitude???distance scaling as well as the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable to previous regional studies.}, language = {en} }