@inproceedings{PoppBlaumDomptailetal.2006, author = {Popp, Alexander and Blaum, Niels and Domptail, Stephanie and Herpel, Nicole and Gr{\"o}ngr{\"o}ft, Alexander and Hoffman, T. T. and J{\"u}rgens, Norbert and Milton, Sue and Nuppenau, Ernst-August and Rossmanith, Eva and Schmidt, Michael and Vogel, Melanie and Vohland, Katrin and Jeltsch, Florian}, title = {From satellite imagery to soil-plant interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7302}, year = {2006}, abstract = {Decisions for the conservation of biodiversity and sustainable management of natural resources are typically related to large scales, i.e. the landscape level. However, understanding and predicting the effects of land use and climate change on scales relevant for decision-making requires to include both, large scale vegetation dynamics and small scale processes, such as soil-plant interactions. Integrating the results of multiple BIOTA subprojects enabled us to include necessary data of soil science, botany, socio-economics and remote sensing into a high resolution, process-based and spatially-explicit model. Using an example from a sustainably-used research farm and a communally used and degraded farming area in semiarid southern Namibia we show the power of simulation models as a tool to integrate processes across disciplines and scales.}, language = {en} } @article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra-Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} } @article{AndresDelgadoErnstGalardiCastillaetal.2019, author = {Andr{\´e}s-Delgado, Laura and Ernst, Alexander and Galardi-Castilla, Mar{\´i}a and Bazaga, David and Peralta, Marina and M{\"u}nch, Juliane and Gonzalez-Rosa, Juan M. and Marques, In{\^e}s and Tessadori, Federico and de la Pompa, Jos{\´e} Luis and Vermot, Julien and Mercader, Nadia}, title = {Actin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells}, series = {Development : Company of Biologists}, volume = {146}, journal = {Development : Company of Biologists}, number = {13}, publisher = {The Company of Biologists Ltd}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.174961}, pages = {15}, year = {2019}, abstract = {The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium.}, language = {en} }