@article{BirkhoferSchoeningAltetal.2012, author = {Birkhofer, Klaus and Sch{\"o}ning, Ingo and Alt, Fabian and Herold, Nadine and Klarner, Bernhard and Maraun, Mark and Marhan, Sven and Oelmann, Yvonne and Wubet, Tesfaye and Yurkov, Andrey and Begerow, Dominik and Berner, Doreen and Buscot, Francois and Daniel, Rolf and Diek{\"o}tter, Tim and Ehnes, Roswitha B. and Erdmann, Georgia and Fischer, Christiane and F{\"o}sel, Baerbel and Groh, Janine and Gutknecht, Jessica and Kandeler, Ellen and Lang, Christa and Lohaus, Gertrud and Meyer, Annabel and Nacke, Heiko and N{\"a}ther, Astrid and Overmann, J{\"o}rg and Polle, Andrea and Pollierer, Melanie M. and Scheu, Stefan and Schloter, Michael and Schulze, Ernst-Detlef and Schulze, Waltraud X. and Weinert, Jan and Weisser, Wolfgang W. and Wolters, Volkmar and Schrumpf, Marion}, title = {General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0043292}, pages = {8}, year = {2012}, abstract = {Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.}, language = {en} } @article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @article{DiPietroErdmannCarpenteretal.2017, author = {Di Pietro, Riccardo and Erdmann, Tim and Carpenter, Joshua H. and Wang, Naixiang and Shivhare, Rishi Ramdas and Formanek, Petr and Heintze, Cornelia and Voit, Brigitte and Neher, Dieter and Ade, Harald W. and Kiriy, Anton}, title = {Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {29}, journal = {Chemistry of materials : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.7b04423}, pages = {10220 -- 10232}, year = {2017}, language = {en} }