@article{LensingElsner2018, author = {Lensing, Johanna Nele and Elsner, Birgit}, title = {Development of hot and cool executive functions in middle childhood}, series = {Journal of experimental child psychology}, volume = {173}, journal = {Journal of experimental child psychology}, publisher = {Elsevier}, address = {New York}, issn = {0022-0965}, doi = {10.1016/j.jecp.2018.04.002}, pages = {187 -- 204}, year = {2018}, abstract = {Although middle childhood is an important period for the development of hot and cool executive functions (EFs), longitudinal studies investigating trajectories of childhood EF development are still limited and little is known about predictors for individual developmental trajectories. The current study examined the development of two typical facets of cool and hot EFs over a 3-year period during middle childhood, comparing a younger cohort (6- and 7-year-olds at the first wave [T1]; n = 621) and an older cohort (8- and 9-year olds at T1; n = 975) of children. "Cool" working memory updating (WM) was assessed using a backward digit span task, and "hot" decision making (DM) was assessed using a child variant of the Iowa Gambling Task. Linear latent growth curve analyses revealed evidence for developmental growth as well as interindividual variance in the initial level and rate of change in both EF facets. Initial level of WM was positively associated with age (both between and within cohorts), socioeconomic status, verbal ability, and processing speed, whereas initial levels of DM were, in addition to a (potentially age-related) cohort effect, exclusively predicted by gender, with boys outperforming girls. None of the variables predicted the rate of change, that is, the developmental trajectories. However, younger children, as compared with older children, had slightly steeper WM growth curves over time, hinting at a leveling off in the development of WM during middle childhood. In sum, these data add important evidence to the understanding of hot and cool EF development during middle childhood. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} } @misc{RohlfHollKirschetal.2018, author = {Rohlf, Helena L. and Holl, Anna K. and Kirsch, Fabian and Krah{\´e}, Barbara and Elsner, Birgit}, title = {Longitudinal Links between Executive Function, Anger, and Aggression in Middle Childhood}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {382}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409471}, pages = {14}, year = {2018}, abstract = {Previous research has indicated that executive function (EF) is negatively associated with aggressive behavior in childhood. However, there is a lack of longitudinal studies that have examined the effect of deficits in EF on aggression over time and taken into account different forms and functions of aggression at the same time. Furthermore, only few studies have analyzed the role of underlying variables that may explain the association between EF and aggression. The present study examined the prospective paths between EF and different forms (physical and relational) and functions (reactive and proactive) of aggression. The habitual experience of anger was examined as a potential underlying mechanism of the link between EF and aggression, because the tendency to get angry easily has been found to be both a consequence of deficits in EF and a predictor of aggression. The study included 1,652 children (between 6 and 11 years old at the first time point), who were followed over three time points (T1, T2, and T3) covering 3 years. At T1, a latent factor of EF comprised measures of planning, rated via teacher reports, as well as inhibition, set shifting, and working-memory updating, assessed experimentally. Habitual anger experience was assessed via parent reports at T1 and T2. The forms and functions of aggression were measured via teacher reports at all three time points. Structural equation modeling revealed that EF at T1 predicted physical, relational, and reactive aggression at T3, but was unrelated to proactive aggression at T3. Furthermore, EF at T1 was indirectly linked to physical aggression at T3, mediated through habitual anger experience at T2. The results indicate that deficits in EF influence the later occurrence of aggression in middle childhood, and the tendency to get angry easily mediates this relation.}, language = {en} } @article{RohlfHollKirschetal.2018, author = {Rohlf, Helena L. and Holl, Anna K. and Kirsch, Fabian and Krah{\´e}, Barbara and Elsner, Birgit}, title = {Longitudinal Links between Executive Function, Anger, and Aggression in Middle Childhood}, series = {Frontiers in Behavioral Neuroscience}, volume = {12}, journal = {Frontiers in Behavioral Neuroscience}, number = {27}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2018.00027}, pages = {1 -- 14}, year = {2018}, abstract = {Previous research has indicated that executive function (EF) is negatively associated with aggressive behavior in childhood. However, there is a lack of longitudinal studies that have examined the effect of deficits in EF on aggression over time and taken into account different forms and functions of aggression at the same time. Furthermore, only few studies have analyzed the role of underlying variables that may explain the association between EF and aggression. The present study examined the prospective paths between EF and different forms (physical and relational) and functions (reactive and proactive) of aggression. The habitual experience of anger was examined as a potential underlying mechanism of the link between EF and aggression, because the tendency to get angry easily has been found to be both a consequence of deficits in EF and a predictor of aggression. The study included 1,652 children (between 6 and 11 years old at the first time point), who were followed over three time points (T1, T2, and T3) covering 3 years. At T1, a latent factor of EF comprised measures of planning, rated via teacher reports, as well as inhibition, set shifting, and working-memory updating, assessed experimentally. Habitual anger experience was assessed via parent reports at T1 and T2. The forms and functions of aggression were measured via teacher reports at all three time points. Structural equation modeling revealed that EF at T1 predicted physical, relational, and reactive aggression at T3, but was unrelated to proactive aggression at T3. Furthermore, EF at T1 was indirectly linked to physical aggression at T3, mediated through habitual anger experience at T2. The results indicate that deficits in EF influence the later occurrence of aggression in middle childhood, and the tendency to get angry easily mediates this relation.}, language = {en} } @misc{HiltonRaelingWartenburgeretal.2019, author = {Hilton, Matt and R{\"a}ling, Romy and Wartenburger, Isabell and Elsner, Birgit}, title = {Parallels in Processing Boundary Cues in Speech and Action}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {579}, issn = {1866-8364}, doi = {10.25932/publishup-43797}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437975}, pages = {12}, year = {2019}, abstract = {Speech and action sequences are continuous streams of information that can be segmented into sub-units. In both domains, this segmentation can be facilitated by perceptual cues contained within the information stream. In speech, prosodic cues (e.g., a pause, pre-boundary lengthening, and pitch rise) mark boundaries between words and phrases, while boundaries between actions of an action sequence can be marked by kinematic cues (e.g., a pause, pre-boundary deceleration). The processing of prosodic boundary cues evokes an Event-related Potentials (ERP) component known as the Closure Positive Shift (CPS), and it is possible that the CPS reflects domaingeneral cognitive processes involved in segmentation, given that the CPS is also evoked by boundaries between subunits of non-speech auditory stimuli. This study further probed the domain-generality of the CPS and its underlying processes by investigating electrophysiological correlates of the processing of boundary cues in sequences of spoken verbs (auditory stimuli; Experiment 1; N = 23 adults) and actions (visual stimuli; Experiment 2; N = 23 adults). The EEG data from both experiments revealed a CPS-like broadly distributed positivity during the 250 ms prior to the onset of the post-boundary word or action, indicating similar electrophysiological correlates of boundary processing across domains, suggesting that the cognitive processes underlying speech and action segmentation might also be shared.}, language = {en} } @article{HiltonRaelingWartenburgeretal.2019, author = {Hilton, Matt and R{\"a}ling, Romy and Wartenburger, Isabell and Elsner, Birgit}, title = {Parallels in Processing Boundary Cues in Speech and Action}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.01566}, pages = {12}, year = {2019}, abstract = {Speech and action sequences are continuous streams of information that can be segmented into sub-units. In both domains, this segmentation can be facilitated by perceptual cues contained within the information stream. In speech, prosodic cues (e.g., a pause, pre-boundary lengthening, and pitch rise) mark boundaries between words and phrases, while boundaries between actions of an action sequence can be marked by kinematic cues (e.g., a pause, pre-boundary deceleration). The processing of prosodic boundary cues evokes an Event-related Potentials (ERP) component known as the Closure Positive Shift (CPS), and it is possible that the CPS reflects domaingeneral cognitive processes involved in segmentation, given that the CPS is also evoked by boundaries between subunits of non-speech auditory stimuli. This study further probed the domain-generality of the CPS and its underlying processes by investigating electrophysiological correlates of the processing of boundary cues in sequences of spoken verbs (auditory stimuli; Experiment 1; N = 23 adults) and actions (visual stimuli; Experiment 2; N = 23 adults). The EEG data from both experiments revealed a CPS-like broadly distributed positivity during the 250 ms prior to the onset of the post-boundary word or action, indicating similar electrophysiological correlates of boundary processing across domains, suggesting that the cognitive processes underlying speech and action segmentation might also be shared.}, language = {en} }