@article{DinevaVermaGonzalezManriqueetal.2020, author = {Dineva, Ekaterina Ivanova and Verma, Meetu and Gonzalez Manrique, Sergio Javier and Schwartz, Pavol and Denker, Carsten}, title = {Cloud model inversions of strong chromospheric absorption lines using principal component analysis}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {341}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH Verl.}, address = {Berlin}, issn = {0004-6337}, doi = {10.1002/asna.202013652}, pages = {64 -- 78}, year = {2020}, abstract = {High-resolution spectroscopy of strong chromospheric absorption lines delivers nowadays several millions of spectra per observing day, when using fast scanning devices to cover large regions on the solar surface. Therefore, fast and robust inversion schemes are needed to explore the large data volume. Cloud model (CM) inversions of the chromospheric H alpha line are commonly employed to investigate various solar features including filaments, prominences, surges, jets, mottles, and (macro-) spicules. The choice of the CM was governed by its intuitive description of complex chromospheric structures as clouds suspended above the solar surface by magnetic fields. This study is based on observations of active region NOAA 11126 in H alpha, which were obtained November 18-23, 2010 with the echelle spectrograph of the vacuum tower telescope at the Observatorio del Teide, Spain. Principal component analysis reduces the dimensionality of spectra and conditions noise-stripped spectra for CM inversions. Modeled H alpha intensity and contrast profiles as well as CM parameters are collected in a database, which facilitates efficient processing of the observed spectra. Physical maps are computed representing the line-core and continuum intensity, absolute contrast, equivalent width, and Doppler velocities, among others. Noise-free spectra expedite the analysis of bisectors. The data processing is evaluated in the context of "big data," in particular with respect to automatic classification of spectra.}, language = {en} } @article{KontogiannisDinevaDierckeetal.2020, author = {Kontogiannis, Ioannis and Dineva, Ekaterina Ivanova and Diercke, Andrea and Verma, Meetu and Kuckein, Christoph and Balthasar, Horst and Denker, Carsten}, title = {High-resolution spectroscopy of an erupting minifilament and its impact on the nearby chromosphere}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {898}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/aba117}, pages = {12}, year = {2020}, abstract = {We study the evolution of a minifilament eruption in a quiet region at the center of the solar disk and its impact on the ambient atmosphere. We used high spectral resolution imaging spectroscopy in H alpha acquired by the echelle spectrograph of the Vacuum Tower Telescope, Tenerife, Spain; photospheric magnetic field observations from the Helioseismic Magnetic Imager; and UV/EUV imaging from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. The H alpha line profiles were noise-stripped using principal component analysis and then inverted to produce physical and cloud model parameter maps. The minifilament formed between small-scale, opposite-polarity magnetic features through a series of small reconnection events, and it erupted within an hour after its appearance in H alpha. Its development and eruption exhibited similarities to large-scale erupting filaments, indicating the action of common mechanisms. Its eruption took place in two phases, namely, a slow rise and a fast expansion, and it produced a coronal dimming, before the minifilament disappeared. During its eruption, we detected a complicated velocity pattern, indicative of a twisted, thread-like structure. Part of its material returned to the chromosphere, producing observable effects on nearby low-lying magnetic structures. Cloud model analysis showed that the minifilament was initially similar to other chromospheric fine structures, in terms of optical depth, source function, and Doppler width, but it resembled a large-scale filament on its course to eruption. High spectral resolution observations of the chromosphere can provide a wealth of information regarding the dynamics and properties of minifilaments and their interactions with the surrounding atmosphere.}, language = {en} } @article{DenkerKuckeinVermaetal.2018, author = {Denker, Carsten and Kuckein, Christoph and Verma, Meetu and Manrique Gonzalez, Sergio Javier Gonzalez and Diercke, Andrea and Enke, Harry and Klar, Jochen and Balthasar, Horst and Louis, Rohan E. and Dineva, Ekaterina Ivanova}, title = {High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {236}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aab773}, pages = {12}, year = {2018}, abstract = {In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry-P{\´e}rot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.}, language = {en} } @article{DinevaPearsonIlyinetal.2022, author = {Dineva, Ekaterina Ivanova and Pearson, Jeniveve and Ilyin, Ilya and Verma, Meetu and Diercke, Andrea and Strassmeier, Klaus and Denker, Carsten}, title = {Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {343}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.20223996}, pages = {23}, year = {2022}, abstract = {The strong chromospheric absorption lines Ca ii H \& K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 \& 82 days in 2018 \& 2019 and derive the Ca ii H \& K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles.}, language = {en} } @article{DierckeKuckeinCauleyetal.2022, author = {Diercke, Andrea and Kuckein, Christoph and Cauley, Paul Wilson and Poppenh{\"a}ger, Katja and Alvarado-G{\´o}mez, Juli{\´a}n David and Dineva, Ekaterina Ivanova and Denker, Carsten}, title = {Solar H alpha excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202040091}, pages = {14}, year = {2022}, abstract = {Context The chromospheric H alpha spectral line is a strong line in the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of stellar activity. For the Sun, other tracers, such as Ca II K, are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in H alpha with globally distributed ground-based full-disk imagers. Aims The aim of this study is to introduce the imaging H alpha excess and deficit as tracers of solar activity and compare them to other established indicators. Furthermore, we investigate whether the active region coverage fraction or the changing H alpha excess in the active regions dominates temporal variability in solar H alpha observations. Methods We used observations of full-disk H alpha filtergrams of the Chromospheric Telescope and morphological image processing techniques to extract the imaging H alpha excess and deficit, which were derived from the intensities above or below 10\% of the median intensity in the filtergrams, respectively. These thresholds allowed us to filter for bright features (plage regions) and dark absorption features (filaments and sunspots). In addition, the thresholds were used to calculate the mean intensity I-mean(E/D) for H alpha excess and deficit regions. We describe the evolution of the H alpha excess and deficit during Solar Cycle 24 and compare it to the mean intensity and other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. In particular, we tried to determine how constant the H alpha excess and number density of H alpha excess regions are between solar maximum and minimum. The number of pixels above or below the intensity thresholds were used to calculate the area coverage fraction of H alpha excess and deficit regions on the Sun, which was compared to the imaging H alpha excess and deficit and the respective mean intensities averaged for the length of one Carrington rotation. In addition, we present the H alpha excess and mean intensity variation of selected active regions during their disk passage in comparison to the number of pixels of H alpha excess regions. Results. The H alpha excess and deficit follow the behavior of the solar activity over the course of the cycle. They both peak around solar maximum, whereby the peak of the H alpha deficit is shortly after the solar maximum. Nonetheless, the correlation of the monthly averages of the H alpha excess and deficit is high with a Spearman correlation of rho =  0.91. The H alpha excess is closely correlated to the chromospheric Mg II index with a correlation of 0.95. The highest correlation of the H alpha deficit is found with the F10.7 cm radio flux, with a correlation of 0.89, due to their peaks after the solar activity maximum. Furthermore, the H alpha deficit reflects the cyclic behavior of polar crown filaments and their disappearance shortly before the solar maximum. We investigated the mean intensity distribution for H alpha excess regions for solar minimum and maximum. The shape of the distributions for solar minimum and maximum is very similar, but with different amplitudes. Furthermore, we found that the area coverage fraction of H alpha excess regions and the H alpha excess are strongly correlated with an overall Spearman correlation of 0.92. The correlation between the H alpha excess and the mean intensity of H alpha excess regions is 0.75. The correlation of the area coverage fraction and the mean intensity of H alpha excess regions is in general relatively low (rho = 0.45) and only for few active regions is this correlation above 0.7. The weak correlation between the area coverage fraction and mean intensity leaves us pessimistic that the degeneracy between these two quantities can be broken for the modeling of unresolved stellar surfaces.}, language = {en} } @phdthesis{Dineva2021, author = {Dineva, Ekaterina Ivanova}, title = {Sun-as-a-star Spectroscopy with PEPSI}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2021}, language = {en} } @article{VermaMatijevičDenkeretal.2021, author = {Verma, Meetu and Matijevič, Gal and Denker, Carsten and Diercke, Andrea and Dineva, Ekaterina Ivanova and Balthasar, Horst and Kamlah, Robert and Kontogiannis, Ioannis and Kuckein, Christoph and Pal, Partha S.}, title = {Classification of high-resolution Solar H alpha spectra using t-distributed stochastic neighbor embedding}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {907}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {1538-4357}, doi = {10.3847/1538-4357/abcd95}, pages = {14}, year = {2021}, abstract = {The H alpha spectral line is a well-studied absorption line revealing properties of the highly structured and dynamic solar chromosphere. Typical features with distinct spectral signatures in H alpha include filaments and prominences, bright active-region plages, superpenumbrae around sunspots, surges, flares, Ellerman bombs, filigree, and mottles and rosettes, among others. This study is based on high-spectral resolution H alpha spectra obtained with the Echelle spectrograph of the Vacuum Tower Telescope (VTT) located at Observatorio del Teide, Tenerife, Spain. The t-distributed stochastic neighbor embedding (t-SNE) is a machine-learning algorithm, which is used for nonlinear dimensionality reduction. In this application, it projects H alpha spectra onto a two-dimensional map, where it becomes possible to classify the spectra according to results of cloud model (CM) inversions. The CM parameters optical depth, Doppler width, line-of-sight velocity, and source function describe properties of the cloud material. Initial results of t-SNE indicate its strong discriminatory power to separate quiet-Sun and plage profiles from those that are suitable for CM inversions. In addition, a detailed study of various t-SNE parameters is conducted, the impact of seeing conditions on the classification is assessed, results for various types of input data are compared, and the identified clusters are linked to chromospheric features. Although t-SNE proves to be efficient in clustering high-dimensional data, human inference is required at each step to interpret the results. This exploratory study provides a framework and ideas on how to tailor a classification scheme toward specific spectral data and science questions.}, language = {en} } @article{DenkerDinevaBalthasaretal.2018, author = {Denker, Carsten and Dineva, Ekaterina Ivanova and Balthasar, Horst and Verma, Meetu and Kuckein, Christoph and Diercke, Andrea and Manrique Gonzalez, Sergio Javier Gonzalez}, title = {Image Quality in High-resolution and High-cadence Solar Imaging}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {293}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-018-1261-1}, pages = {24}, year = {2018}, abstract = {Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrastrich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of theMFGS algorithm uncover the field-and structure-dependency of this imagequality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.}, language = {en} }