@article{MartinezValdesNegroFallaetal.2018, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Negro, Francesco and Falla, Deborah and De Nunzio, Alessandro Marco and Farina, Dario}, title = {Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles}, series = {Journal of applied physiology}, volume = {124}, journal = {Journal of applied physiology}, number = {4}, publisher = {American Chemical Society}, address = {Bethesda}, issn = {8750-7587}, doi = {10.1152/japplphysiol.01115.2017}, pages = {1071 -- 1079}, year = {2018}, abstract = {Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10. 30. 50, and 70\% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM (P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose. we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL (P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (similar to 63\% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW \& NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.}, language = {en} } @article{MuellerMartinezValdesStolletal.2018, author = {Mueller, Juliane and Martinez-Valdes, Eduardo Andr{\´e}s and Stoll, Josefine and Mueller, Steffen and Engel, Tilman and Mayer, Frank}, title = {Differences in neuromuscular activity of ankle stabilizing muscles during postural disturbances}, series = {Gait \& posture}, volume = {61}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2018.01.023}, pages = {226 -- 231}, year = {2018}, abstract = {The purpose was to examine gender differences in ankle stabilizing muscle activation during postural disturbances. Seventeen participants (9 females: 27 +/- 2yrs., 1.69 +/- 0.1 m, 63 +/- 7 kg; 8 males: 29 +/- 2yrs., 1.81 +/- 0.1 m; 83 +/- 7 kg) were included in the study. After familiarization on a split-belt-treadmill, participants walked (1 m/s) while 15 right-sided perturbations were randomly applied 200 ms after initial heel contact. Muscle activity of M. tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM) was recorded during unperturbed and perturbed walking. The root mean square (RMS; [\%]) was analyzed within 200 ms after perturbation. Co-activation was quantified as ratio of antagonist (GM)/agonist (TA) EMG-RMS during unperturbed and perturbed walking. Time to onset was calculated (ms). Data were analyzed descriptively (mean +/- SD) followed by three-way-ANOVA (gender/condition/muscle; alpha= 0.05). Perturbed walking elicited higher EMG activity compared to normal walking for TA and PL in both genders (p < 0.000). RMS amplitude gender comparisons revealed an interaction between gender and condition (F = 4.6, p = 0.049) and, a triple interaction among gender, condition and muscle (F = 4.7, p = 0.02). Women presented significantly higher EMG-RMS [\%] PL amplitude than men during perturbed walking (mean difference = 209.6\%, 95\% confidence interval = -367.0 to -52.2\%, p < 0.000). Co-activation showed significant lower values for perturbed compared to normal walking (p < 0.000), without significant gender differences for both walking conditions. GM activated significantly earlier than TA and PL (p < 0.01) without significant differences between the muscle activation onsets of men and women (p = 0.7). The results reflect that activation strategies of the ankle encompassing muscles differ between genders. In provoked stumbling, higher PL EMG activity in women compared to men is present. Future studies should aim to elucidate if this specific behavior has any relationship with ankle injury occurrence between genders.}, language = {en} } @article{MartinezValdesNegroLaineetal.2017, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Negro, F. and Laine, C. M. and Falla, D. and Mayer, Frank and Farina, Dario}, title = {Tracking motor units longitudinally across experimental sessions with high-density surface electromyography}, series = {The Journal of Physiology}, volume = {595}, journal = {The Journal of Physiology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-3751}, doi = {10.1113/JP273662}, pages = {1479 -- 1496}, year = {2017}, abstract = {A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high-density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70\% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre-post intervention during isometric knee extensions at 10 and 30\% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3\% and 40.1\% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra-class correlation coefficients ranged between 0.63-0.99 and 0.39-0.95, respectively). In Experiment II, similar to 40\% of the MUs could be tracked before and after the training intervention and training-induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders.}, language = {en} } @article{MartinezValdesFarinaNegroetal.2018, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Farina, Dario and Negro, Francesco and Del Vecchio, Alessandro and Falla, Deborah}, title = {Early motor unit conduction velocity changes to high-intensity interval training versus continuous training}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {50}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/MSS.0000000000001705}, pages = {2339 -- 2350}, year = {2018}, abstract = {Purpose Moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) are associated with different adjustments in motor output. Changes in motor unit (MU) peripheral properties may contribute to these adjustments, but this is yet to be elucidated. This study evaluated early changes in MU conduction velocity (MUCV) and MU action potential amplitude after 2 wk of either HIIT or MICT. Methods Sixteen men were assigned to either an MICT group or HIIT group (n = 8 each), and participated in six training sessions over 14 d. HIIT: 8 to 12 x 60-s intervals at 100\% peak power output. Moderate-intensity continuous training: 90 to 120 min continuous cycling at similar to 65\% VO2peak. Preintervention and postintervention, participants performed maximal voluntary contractions (MVC) and submaximal (10\%, 30\%, 50\%, and 70\% of MVC) isometric knee extensions while high-density EMG was recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles. The high-density EMG was decomposed into individual MU by convolutive blind-source separation and tracked preintervention and postintervention. Results Both training interventions induced changes in MUCV, but these changes depended on the type of training (P < 0.001). The HIIT group showed higher values of MUCV after training at all torque levels (P < 0.05), MICT only displayed changes in MUCV at low torque levels (10\%-30\% MVC, P < 0.002). There were no changes in MU action potential amplitude for either group (P = 0.2). Conclusions Two weeks of HIIT or MICT elicit differential changes in MUCV, likely due to the contrasting load and volume used in such training regimes. This new knowledge on the neuromuscular adaptations to training has implications for exercise prescription.}, language = {en} } @article{LaineMartinezValdesFallaetal.2015, author = {Laine, Christopher M. and Martinez-Valdes, Eduardo Andr{\´e}s and Falla, Deborah and Mayer, Frank and Farina, Dario}, title = {Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input}, series = {The journal of neuroscience}, volume = {35}, journal = {The journal of neuroscience}, number = {35}, publisher = {Society for Neuroscience}, address = {Washington}, issn = {0270-6474}, doi = {10.1523/JNEUROSCI.0240-15.2015}, pages = {12207 -- 12216}, year = {2015}, abstract = {Neural control of synergist muscles is not well understood. Presumably, each muscle in a synergistic group receives some unique neural drive and some drive that is also shared in common with other muscles in the group. In this investigation, we sought to characterize the strength, frequency spectrum, and force dependence of the neural drive to the human vastus lateralis and vastus medialis muscles during the production of isometric knee extension forces at 10 and 30\% of maximum voluntary effort. High-density surface electromyography recordings were decomposed into motor unit action potentials to examine the neural drive to each muscle. Motor unit coherence analysis was used to characterize the total neural drive to each muscle and the drive shared between muscles. Using a novel approach based on partial coherence analysis, we were also able to study specifically the neural drive unique to each muscle (not shared). The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth. Muscle-specific neural drive was at low frequencies (<5 Hz) and relatively weak. Frequencies of neural drive associated with afferent feedback (6 - 12 Hz) and with descending cortical input (similar to 20 Hz) were almost entirely shared by the two muscles, whereas low-frequency (<5 Hz) drive comprised shared (primary) and muscle-specific (secondary) components. This study is the first to directly investigate the extent of shared versus independent control of synergist muscles at the motor neuron level.}, language = {en} } @inproceedings{MartinezValdesCarlsohnHeydenreichetal.2014, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Carlsohn, Anja and Heydenreich, Juliane and Mayer, Frank}, title = {Gastrointestinal complaints following high carbohydrate intake immediately after glycogen depleting exercise: Influence on performance}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {46}, booktitle = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, pages = {160 -- 160}, year = {2014}, language = {en} } @phdthesis{MartinezValdes2016, author = {Mart{\´i}nez Vald{\´e}s, Eduardo Andr{\´e}s}, title = {Neuromuscular adaptations of either endurance or high-intensity interval training}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396383}, school = {Universit{\"a}t Potsdam}, pages = {VII, 140, XII}, year = {2016}, abstract = {During the last decade, high intensity interval training (HIIT) has been used as an alternative to endurance (END) exercise, since it requires less time to produce similar physiological adaptations. Previous literature has focused on HIIT changes in aerobic metabolism and cardiorespiratory fitness, however, there are currently no studies focusing on its neuromuscular adaptations. Therefore, this thesis aimed to compare the neuromuscular adaptations of both HIIT and END after a two-week training intervention, by using a novel technology called high-density surface electromyography (HDEMG) motor unit decomposition. This project consisted in two experiments, where healthy young men were recruited (aged between 18 to 35 years). In experiment one, the reliability of HDEMG motor unit variables (mean discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate variability) was tested (Study 1), a new method to track the same motor units longitudinally was proposed (Study 2), and the level of low (<5Hz) and high (>5Hz) frequency motor unit coherence between vastus medialis (VM) and lateralis (VL) knee extensor muscles was measured (Study 4). In experiment two, a two-week HIIT and END intervention was conducted where cardiorespiratory fitness parameters (e.g. peak oxygen uptake) and motor unit variables from the VM and VL muscles were assessed pre and post intervention (Study 3). The results showed that HDEMG is reliable to monitor changes in motor unit activity and also allows the tracking of the same motor units across different testing sessions. As expected, both HIIT and END improved cardiorespiratory fitness parameters similarly. However, the neuromuscular adaptations of both types of training differed after the intervention, with HIIT showing a significant increase in knee extensor muscle strength that was accompanied by increased VM and VL motor unit discharge rates and HDEMG amplitude at the highest force levels [(50 and 70\% of the maximum voluntary contraction force (MVC)], while END training induced a marked increase in time to task failure at lower force levels (30\% MVC), without any influence on HDEMG amplitude and discharge rates. Additionally, the results showed that VM and VL muscles share most of their synaptic input since they present a large amount of low and high frequency motor unit coherence, which can explain the findings of the training intervention where both muscles showed similar changes in HDEMG amplitude and discharge rates. Taken together, the findings of the current thesis show that despite similar improvements in cardiopulmonary fitness, HIIT and END induced opposite adjustments in motor unit behavior. These results suggest that HIIT and END show specific neuromuscular adaptations, possibly related to their differences in exercise load intensity and training volume.}, language = {en} } @article{MartinezValdesFallaNegroetal.2017, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Falla, Deborah and Negro, Francesco and Mayer, Frank and Farina, Dario}, title = {Differential Motor Unit Changes after Endurance or High-Intensity Interval Training}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {49}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/MSS.0000000000001209}, pages = {1126 -- 1136}, year = {2017}, abstract = {Purpose Using a novel technique of high-density surface EMG decomposition and motor unit (MU) tracking, we compared changes in the properties of vastus medialis and vastus lateralis MU after endurance (END) and high-intensity interval training (HIIT). Methods Sixteen men were assigned to the END or the HIIT group (n = 8 each) and performed six training sessions for 14 d. Each session consisted of 8-12 x 60-s intervals at 100\% peak power output separated by 75 s of recovery (HIIT) or 90-120 min continuous cycling at similar to 65\% VO2peak (END). Pre- and postintervention, participants performed 1) incremental cycling to determine VO2peak and peak power output and 2) maximal, submaximal (10\%, 30\%, 50\%, and 70\% maximum voluntary contraction [MVC]), and sustained (until task failure at 30\% MVC) isometric knee extensions while high-density surface EMG signals were recorded from the vastus medialis and vastus lateralis. EMG signals were decomposed (submaximal contractions) into individual MU by convolutive blind source separation. Finally, MU were tracked across sessions by semiblind source separation. Results After training, END and HIIT improved VO2peak similarly (by 5.0\% and 6.7\%, respectively). The HIIT group showed enhanced maximal knee extension torque by similar to 7\% (P = 0.02) and was accompanied by an increase in discharge rate for high-threshold MU (50\% knee extension MVC) (P < 0.05). By contrast, the END group increased their time to task failure by similar to 17\% but showed no change in MU discharge rates (P > 0.05). Conclusions HIIT and END induce different adjustments in MU discharge rate despite similar improvements in cardiopulmonary fitness. Moreover, the changes induced by HIIT are specific for high-threshold MU. For the first time, we show that HIIT and END induce specific neuromuscular adaptations, possibly related to differences in exercise load intensity and training volume.}, language = {en} }