@article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AliuArchambaultArcheretal.2015, author = {Aliu, E. and Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Kansson, N. H. A. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A search for pulsations from geminga above 100 GeV with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {800}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/800/1/61}, pages = {7}, year = {2015}, abstract = {We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM-Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95\% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0x10(-13) s(-1) cm(-2) and 1.7 x 10(-13) s(-1) cm(-2) for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above similar to 50 GeV.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Loo, A. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Petrashyk, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Chernyakova, M. and Roberts, M. S. E.}, title = {A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {831}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/831/2/193}, pages = {7}, year = {2016}, abstract = {The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Errando, Manel and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Park, N. and Perkins, Jeremy S. and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B. and Vurm, Indrek and Beloborodov, Andrei}, title = {A Strong Limit on the Very-high-energy Emission from GRB 150323A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab371}, pages = {6}, year = {2018}, abstract = {On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1\% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only similar to 2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to similar to 50\% at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below similar to 100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A greater than or similar to 3 x 10(11) g . cm(-1), consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.}, language = {en} } @article{AbeysekaraArcherAuneetal.2018, author = {Abeysekara, A. U. and Archer, A. and Aune, Taylor and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, Amy and Gotthelf, Eric V. and Grube, J. and Hanna, David and Hervet, O. and Holder, J. and Huang, K. and Hughes, G. and Humensky, T. B. and Huetten, M. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, Dirk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rousselle, J. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B.}, title = {A Very High Energy gamma-Ray Survey toward the Cygnus Region of the Galaxy}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac4a2}, pages = {33}, year = {2018}, abstract = {We present results from deep observations toward the Cygnus region using 300 hr of very high energy (VHE)gamma-ray data taken with the VERITAS Cerenkov telescope array and over 7 yr of high-energy.-ray data taken with the Fermi satellite at an energy above 1 GeV. As the brightest region of diffuse gamma-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130) and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL J2021.0+4031e (the Gamma Cygni supernova remnant) was examined, and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE gamma-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3\% of the Crab Nebula flux. We interpret these observations in a multiwavelength context and present the most detailed gamma-ray view of the region to date.}, language = {en} } @article{AliuAuneBarnackaetal.2014, author = {Aliu, E. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connaughton, V. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and McEnery, J. E. and Perkins, J. S. and Veres, P. and Zhu, S.}, title = {Constraints on very high energy emission from GRB 130427A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {795}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/795/1/L3}, pages = {6}, year = {2014}, abstract = {Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for similar to 70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB130427A similar to 71 ks (similar to 20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brantseg, T. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Geringer-Sameth, A. and Griffin, S. and Grube, J. and H{\"u}tten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Hummensky, B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Koushiappas, S. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {95}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.95.082001}, pages = {14}, year = {2017}, abstract = {We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of similar to 230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35 x 10(-23) cm(3) s(-1) at 1 TeV for the bottom quark (b (b) over bar) final state, 2.85 x 10(-24) cm(3) s(-1) at 1 TeV for the tau lepton (tau+tau(-)) final state and 1.32 x 10-25 cm(3) s(-1) at 1 TeV for the gauge boson (gamma gamma) final state.}, language = {en} } @article{BenbowBirdBrilletal.2019, author = {Benbow, W. and Bird, R. and Brill, A. and Brose, Robert and Chromey, A. J. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Giuri, C. and Gueta, O. and Hanna, D. and Halpern, J. P. and Hassan, Tarek and Holder, J. and Hughes, G. and Humensky, T. B. and Joyce, Amy M. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Matthews, N. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Nievas-Rosillos, M. and Ong, R. A. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, John and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J.}, title = {Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0741-z}, pages = {511 -- 516}, year = {2019}, abstract = {The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.}, language = {en} } @article{ArchambaultArcherBarnackaetal.2016, author = {Archambault, S. and Archer, A. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and B{\"o}ttcher, Markus and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Nelson, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Sweeney, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of very high energy gamma rays from 1ES 1440+122}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1319}, pages = {202 -- 208}, year = {2016}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} } @article{ArchambaultArcherAuneetal.2016, author = {Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I+61 degrees 303}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {817}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/817/1/L7}, pages = {6}, year = {2016}, abstract = {The TeV binary system LS I +61 degrees 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5\% and 15\% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I + 61 degrees. 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30\% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I + 61 degrees 303 during the flares, provides constraints on the properties of the accelerator in the source.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Bourbeau, E. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Huetten, M. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, Nahee and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Slane, P. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/1/23}, pages = {8}, year = {2017}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, Ralph and Bourbeau, E. and Bouvier, A. and Buchovecky, M. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Ciupik, L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray observations under bright moonlight with VERITAS}, series = {Astroparticle physics}, volume = {91}, journal = {Astroparticle physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2017.03.001}, pages = {34 -- 43}, year = {2017}, abstract = {Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35\%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80\% Moon illumination), resulting in 30\% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V and Cui, Wei and Danie, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huttens, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynold, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Brisken, W. F. and Pontrelli, P.}, title = {HESS J1943+213}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aacbd0}, pages = {15}, year = {2018}, abstract = {HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 ' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2019, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buchovecky, M. and Calderon-Madera, D. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Giuri, C. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Oliver and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Nievas-Rosillo, M. and Ong, R. A. and Pfrang, Konstantin Johannes and Pohl, Martin and Prado, R. R. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Ribeiro, D. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Svraka, T. and Weinstein, A. and Wells, R. M. and Wilcox, Patrick and Wilhelm, Alina and Williams, David Arnold and Williamson, T. J. and Zitzer, B.}, title = {Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4817}, pages = {8}, year = {2019}, abstract = {The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the universe?s history. Spectral measurements of blazars at very high energies (>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56?56 ?m, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kelley-Hoskins, N. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Wissel, S. A. and Zitzer, B.}, title = {Measurement of the iron spectrum in cosmic rays by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.022009}, pages = {15}, year = {2018}, abstract = {We present a new measurement of the energy spectrum of iron nuclei in cosmic rays from 20 TeV to 500 TeV; The measurement makes use of a template-based analysis method, which, for the first time, is applied to the energy reconstruction of iron-induced air showers recorded by the VERITAS array of imaging atmospheric Cherenkov telescopes. The event selection makes use of the direct Cherenkov light which is emitted by charged particles before the first interaction, as well as other parameters related to the shape of the recorded air shower images. The measured spectrum is well described by a power law dF/dE = f(0) center dot (E/E-0)(-gamma) over the full energy range, with gamma = 2.82 +/- 0.30(stat)(-0.27)(+0.24)(syst) and f(0) = (4.82 +/- 0.98(stat)(-2.70)(+2.12)(syst)) x 10(-7) m(-2) s(-1) TeV-1 sr(-1) at E-0 = 50 TeV, with no indication of a cutoff or spectral break. The measured differential flux is compatible with previous results, with improved statistical uncertainty at the highest energies.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2017, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Biasuzzi, B. and Biland, A. and Blanch, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Buson, S. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Wilhelmi, E. de Ona and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Glawion, D. Eisenacher and Elsaesser, D. and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moretti, E. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Rosillo, M. Nievas and Nilsson, K. and Nishijima, K. and Noda, K. and Nogues, L. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reichardt, I. and Rhode, W. and Ribo, M. and Rico, J. and Rodriguez Garcia, J. and Saito, T. and Satalecka, K. and Schroder, S. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Vanzo, G. and Verguilov, V. and Vovk, I. and Ward, J. E. and Will, M. and Wu, M. H. and Zanin, R. and Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, N. and Park, N. and Perkins, J. and Pichel, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Razzaque, S. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Larionov, V. M. and Arkharov, A. A. and Blinov, D. A. and Efimova, N. V. and Grishina, T. S. and Hagen-Thorn, V. A. and Kopatskaya, E. N. and Larionova, L. V. and Larionova, E. G. and Morozova, D. A. and Troitsky, I. S. and Ligustri, R. and Calcidese, P. and Berdyugin, A. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kimeridze, G. N. and Sigua, L. A. and Kurtanidze, S. O. and Chigladze, R. A. and Chen, W. P. and Koptelova, E. and Sakamoto, T. and Sadun, A. C. and Moody, J. W. and Pace, C. and Pearson, R. and Yatsu, Y. and Mori, Y. and Carraminyana, A. and Carrasco, L. and de la Fuente, E. and Norris, J. P. and Smith, P. S. and Wehrle, A. and Gurwell, M. A. and Zook, A. and Pagani, C. and Perri, M. and Capalbi, M. and Cesarini, A. and Krimm, H. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Ros, E. and Pushkarev, A. B. and Lister, M. L. and Sokolovsky, K. V. and Kadler, M. and Piner, G. and Lahteenmaki, A. and Tornikoski, M. and Angelakis, E. and Krichbaum, T. P. and Nestoras, I. and Fuhrmann, L. and Zensus, J. A. and Cassaro, P. and Orlati, A. and Maccaferri, G. and Leto, P. and Giroletti, M. and Richards, J. L. and Max-Moerbeck, W. and Readhead, A. C. S.}, title = {Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {603}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration;VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629540}, pages = {30}, year = {2017}, abstract = {Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays). Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brantseg, T. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gunawardhana, Isuru and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Williams, D. A. and Zitzer, B. and Jorstad, Svetlana G. and Marscher, Alan P. and Lister, Matthew L. and Kovalev, Yuri Y. and Pushkarev, A. B. and Savolainen, Tuomas and Agudo, I. and Molina, S. N. and Gomez, J. L. and Larionov, Valeri M. and Borman, G. A. and Mokrushina, A. A. and Tornikoski, Merja and Lahteenmaki, A. and Chamani, W. and Enestam, S. and Kiehlmann, S. and Hovatta, Talvikki and Smith, P. S. and Pontrelli, P.}, title = {Multiwavelength Observations of the Blazar BL Lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab35c}, pages = {14}, year = {2018}, abstract = {Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL. Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL. Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of similar to 2.3 hr and a decay time of similar to 36 min. The peak flux above 200 GeV is (4.2 +/- 0.6) x 10(-6) photon m(-2) s(-1) measured with a 4-minute-binned light curve, corresponding to similar to 180\% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, A. and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, E. and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Buchovecky, M. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Alonso, M. Fernandez and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Hutten, M. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, I. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/835/2/288}, pages = {12}, year = {2017}, abstract = {We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron-positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron- positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218 vertical bar 304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10(-14) G at the 95\% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES. 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.}, language = {en} } @article{ArcherBenbowBirdetal.2016, author = {Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Huetten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Yusef-Zadeh, F.}, title = {TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/129}, pages = {162 -- 167}, year = {2016}, abstract = {The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S.. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and. (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.}, language = {en} } @article{OrientiFinkeRaiterietal.2015, author = {Orienti, M. and Finke, J. and Raiteri, C. M. and Hovatta, T. and Larsson, J. and Max-Moerbeck, W. and Perkins, J. and Readhead, A. C. S. and Richards, J. L. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gerard, L. and Gillanders, G. H. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {The most powerful flaring activity from the NLSyl PMN J0948+0022}, series = {Monthly notices of the Royal Astronomical Society}, volume = {446}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {VERITAS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu2251}, pages = {2456 -- 2467}, year = {2015}, abstract = {We report on multifrequency observations performed during 2012 December-2013 August of the first narrow-line Seyfert 1 galaxy detected in gamma-rays, PMN J0948+0022 (z = 0.5846). A y -ray flare was observed by the Large Area Telescope on board Fermi during 2012 December-2013 January, reaching a daily peak flux in the 0.1-100 GeV energy range of (155 31) x 10 8 ph cm(-2) S-1 on 2013 January 1, corresponding to an apparent isotropic luminosity of similar to 1.5 x 1048 erg s(-1). The y -ray flaring period triggered Swift and Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations in addition to radio and optical monitoring by Owens Valley Radio Observatory, Monitoring Of Jets in Active galactic nuclei with VLBA Experiments, and Catalina Real-time Transient Survey. A strong flare was observed in optical, UV, and X-rays on 2012 December 30, quasi-simultaneously to the y -ray flare, reaching a record flux for this source from optical to y gamma-rays. VERITAS observations at very high energy (E > 100 GeV) during 2013 January 6-17 resulted in an upper limit of F>0.2 Trev < 4.0 x 10(-12) ph cm(-2) s(-1). We compared the spectral energy distribution (SED) of the flaring state in 2013 January with that of an intermediate state observed in 2011. The two SEDs, modelled as synchrotron emission and an external Compton scattering of seed photons from a dust torus, can be modelled by changing both the electron distribution parameters and the magnetic field.}, language = {en} } @article{AleksicAnsoldiAntonellietal.2015, author = {Aleksic, J. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Biasuzzi, B. and Biland, A. and Blanch Bigas, O. and Boller, A. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and Wilhelmi, E. de Ona and Mendez, C. Delgado and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher, D. and Elsaesser, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and Godinovic, N. and Munoz, A. Gonzalez and Gozzini, S. R. and Hadasch, D. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hildebrand, D. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kadenius, V. and Kellermann, H. and Knoetig, M. L. and Kodani, K. and Konno, Y. and Krause, J. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Lozano, I. and Makariev, M. and Mallot, K. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Munar-Adrover, P. and Nakajima, D. and Niedzwiecki, A. and Nilsson, K. and Nishijima, K. and Noda, K. and Orito, R. and Overkemping, A. and Paiano, S. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Rugamer, S. and Saito, T. and Saito, K. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Sun, S. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Spanier, F. and Stamatescu, V. and Stamerra, A. and Steinbring, T. and Steinke, B. and Storz, J. and Strzys, M. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Tibolla, O. and Torres, D. F. and Toyama, T. and Treves, A. and Uellenbeck, M. and Vogler, P. and Zanin, R. and Archambault, S. and Archer, A. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, Xiaoming and Ciupik, L. and Collins-Hughes, E. and Cui, W. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Gyuk, G. and Hakansson, Nils and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Ong, R. A. and Otte, A. N. and Perkins, J. S. and Pichel, A. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Wakely, S. P. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Buson, S. and Finke, J. and Villata, M. and Raiteri, C. and Aller, H. D. and Aller, M. F. and Cesarini, A. and Chen, W. P. and Gurwell, M. A. and Jorstad, S. G. and Kimeridze, G. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Lin, H. C. and McBreen, B. and Moody, J. W. and Morozova, D. A. and Marscher, A. P. and Max-Moerbeck, W. and Nikolashvili, M. G. and Perri, M. and Readhead, A. C. S. and Richards, J. L. and Ros, J. A. and Sadun, A. C. and Sakamoto, T. and Sigua, L. A. and Smith, P. S. and Tornikoski, M. and Troitsky, I. S. and Wehrle, A. E. and Jordan, B.}, title = {Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {578}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424811}, pages = {26}, year = {2015}, abstract = {Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims. The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results. The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2-10 keV band and the VHE gamma-ray flux above 200 GeV, consistent with the gamma-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE gamma-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 x 10(4) < gamma < 6 x 10(5), where. is the Lorentz factor of the electrons. Such a two-zone scenario would naturally lead to the correlated variability at the X-ray and VHE bands without variability at the optical/UV band, as well as to shorter timescales for the variability at the X-ray and VHE bands with respect to the variability at the other bands. Conclusions. Both the one-zone and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly with the underlying particle population. This shows that the particle acceleration and cooling mechanism that produces the radiating particles might be the main mechanism responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement with the observed SED at the narrow peaks of the low-and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by varying the parameters related to the emitting region itself (delta, B and R), in addition to the parameters related to the particle population.}, language = {en} } @article{ArchambaultArcherBenbowetal.2016, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B. and Fumagalli, M. and Prochaska, J. X.}, title = {UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES}, series = {The astronomical journal}, volume = {151}, journal = {The astronomical journal}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-6256}, doi = {10.3847/0004-6256/151/6/142}, pages = {19}, year = {2016}, abstract = {Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) gamma-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of similar to 570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4s excess.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Petrashyk, A. and Petry, D. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Reynolds, K. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196}, series = {Monthly notices of the Royal Astronomical Society}, volume = {459}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw664}, pages = {2550 -- 2557}, year = {2016}, abstract = {We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.}, language = {en} } @article{AliuArcherAuneetal.2015, author = {Aliu, E. and Archer, A. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, Wei and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Nieto, Daniel and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of the BL LAC OBJECT PG 1553+113}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/7}, pages = {9}, year = {2015}, abstract = {We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 +/- 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 +/- 0.06) x 10(-11) photons cm(-2) s(-1), corresponding to 6.9\% of the Crab Nebula flux. We also present the combined gamma-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV. The data are well fit by a power law with an exponential cutoff at 101.9 +/- 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the gamma-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z <= 0.62. A strongly elevated mean flux of (2.50 +/- 0.14) x10(-11) photons cm(-2) s(-1) (10.3\% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as (4.44 +/- 0.71) x10(-11) photons cm(-2) s(-1) (18.3\% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a chi(2) probability for a steady flux of 0.03\%.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{ArcherBarnackaBeilickeetal.2014, author = {Archer, A. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, W. and Chen, Xiaoming and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Galante, N. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {Very-high energy observations of the galactic center region by veritas IN 2010-2012}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {790}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/790/2/149}, pages = {9}, year = {2014}, abstract = {The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significance by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above similar to 2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.}, language = {en} } @article{AllenArchambaultArcheretal.2017, author = {Allen, C. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Eisch, J. D. and Falcone, Abe and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilhelm, Alina and Williams, D. A.}, title = {Very-High-Energy gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1756}, pages = {2117 -- 2123}, year = {2017}, abstract = {We present very-high-energy gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above the background of 20.8 sigma in 47.2 h (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations, the temporal properties of 1ES 2344+514 are studied on short and long times-scales. We fit a constant-flux model to nightly and seasonally binned light curves and apply a fractional variability test to determine the stability of the source on different time-scales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly binned light curves and for the long-term seasonally binned light curve at the > 3 sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (x(2)/NDF = 7.89/6) by a power-law function with an index Gamma = 2.46 +/- 0.06(stat) +/- 0.20(sys) and extends to at least 8 TeV. The extragalactic-backgroundlight-deabsorbed spectrum is adequately fit (x(2)/NDF = 6.73/6) by a power-law function with an index Gamma = 2.15 +/- 0.06(stat) +/- 0.20(sys) while an F-test indicates that the power law with an exponential cut-off function provides a marginally better fit (x(2)/NDF = 2.56/5) at the 2.1 sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.}, language = {en} }