@article{BlasigWinklerLassowskietal.2006, author = {Blasig, Ingolf E. and Winkler, Lars and Lassowski, Birgit and M{\"u}ller, Sandra L. and Zuleger, Nikolaj and Krause, Eberhard and Krause, Gerd and Gast, Klaus and Kolbe, Michael and Piontek, J{\"o}rg}, title = {On the self-association potential of transmembrane tight junction proteins}, issn = {1420-682X}, doi = {10.1007/s00018-005-5472-x}, year = {2006}, abstract = {Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiled-coil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported}, language = {en} } @article{WalterRueckertVossetal.2009, author = {Walter, Juliane K. and R{\"u}ckert, Christine and Voss, Martin and M{\"u}ller, Sebastian L. and Piontek, Joerg and Gast, Klaus and Blasig, Ingolf E.}, title = {The oligomerization of the coiled coil-domain of occluddin is redox sensitive}, issn = {0077-8923}, doi = {10.1111/j.1749-6632.2009.04058.x}, year = {2009}, abstract = {The transmembrane tight junction protein occludin is sensitive to oxidative stress. Occludin oligomerizes; however, its function in the tight junction is unknown. The cytosolic C-terminal tail contains a coiled coil-domain and forms dimers contributing to the oligomerization. The regulation of the oligomerization remains unclear. As the domain area contains sulfhydryl residues, we tested the hypothesis that the dimerization of the coiled coil-domain depends on these residues. We showed that the dimerization is modulated by the thiol concentration in the low-millimolar range, which is relevant both for physiological and pathophysiological conditions. Masking the sulfhydryl residues in the fragment by covalent binding of 4-vinyl pyridine prevented the dimerization but did not affect its helical structure and cylindric shape. The data demonstrate, for the first time, that disulfide bridge formation of murine cystein 408 is involved in the dimerization. This process is redox-sensitive but the secondary structure of the domain is not. It is concluded that the dimerization of occludin may play a regulatory role in the tight junction assembly under physiological and pathological conditions.}, language = {en} }