@article{SunOsenbergDongetal.2018, author = {Sun, Fu and Osenberg, Markus and Dong, Kang and Zhou, Dong and Hilger, Andre and Jafta, Charl J. and Risse, Sebastian and Lu, Yan and Markoetter, Henning and Manke, Ingo}, title = {Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems}, series = {ACS energy letters / American Chemical Society}, volume = {3}, journal = {ACS energy letters / American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.7b01254}, pages = {356 -- 365}, year = {2018}, abstract = {Efficient Li utilization is generally considered to be a prerequisite for developing next-generation energy storage systems (ESSs). However, uncontrolled growth of Li microstructures (LmSs) during electrochemical cycling has prevented its practical commercialization. Herein, we attempt to understand the correlation of morphological evolution of Li electrodes with degrading electrochemical performances of Li/LiCoO2 and Li/S systems by synchrotron X-ray phase contrast tomography technique. It was found that the continuous transformation of the initial dense Li bulk to a porous lithium interface (PL1) structure intimately correlates with the gradually degrading overall cell performance of these two systems. Additionally, the formation mechanism of the PLI and its correlation with previously reported inwardly growing LmS and the lithium-reacted region have been intensively discussed. The information that we gain herein is complementary to previous investigations and may provide general insights into understanding of degradation mechanisms of Li metal anodes and also provide highly needed guidelines for effective design of reliable next-generation Li metal-based ESSs.}, language = {en} } @article{ZhouChenDongetal.2015, author = {Zhou, Xiqiang and Chen, Daizhao and Dong, Shaofeng and Zhang, Yanqiu and Guo, Zenghui and Wei, Hengye and Yu, Hao}, title = {Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications for barium and sulfur cycling in the earliest Cambrian}, series = {Precambrian research}, volume = {263}, journal = {Precambrian research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2015.03.006}, pages = {79 -- 87}, year = {2015}, abstract = {Barite concretions and bands are widely distributed in black shale-chert horizons in the Yurtus Formation of Lower Cambrian in Aksu area, northwestern Tarim Basin, NW China. They mainly consist of coarse-grained anhedral to euhedral barite crystals with minor dolomites and pyrites. Petrological features indicate these concretions grew from the porewater in unconsolidated sediments at shallow burial below sediment-water interface. The slight deviation of Sr-87/Sr-86 ratios (0.7083 to 0.7090) and significant elevated delta S-34 values (56.8-76.4 parts per thousand CDT) of barite samples with respect to those of the Early Cambrian seawater further support that barite deposits precipitated from the enclosed porewater in sediment column, which evolved from the penecontemporaneous seawater with weak interaction with the host fine-grained siliciclastic sediments and highly-depleted sulfate in response to prolonged strong bacterial sulfate reduction without necessary renewal. The abundant organic matters in the basal Yurtus Formation should have facilitated developing sulfate-depleted methanogenesis zone and sulfate-methane transition zone (SMTZ) slightly after deposition. Therefore, barite deposits in the Yurtus Formation most likely resulted from diagenetic barium cycling and persistently grew from the porewater in the static SMTZ with a low sedimentation rate in the Early Cambrian. In comparison with the distribution of sedimentary barites in geological records, we tentatively proposed that a transition in diagenetic barium cycling and associated mineralization may have occurred from the Precambrian to Cambrian periods; this scenario may be causally linked to the changes in marine ecology (the advent of mesozooplankton and associated faecal pellet) and geochemistry (the increase of seawater sulfate concentration). Thus, the occurrence of diagenetic barite deposits in the Yurtus Formation implies that diagenetic barium cycling and more effective scavenging of barium from CH4- and Ba-rich porewaters within sediments might have become an nonnegligible process in continental margin areas, at least, since the earliest Cambrian, which could have significantly impacted the marine barium cycling. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} }