@article{DongJantzenStaceyetal.2019, author = {Dong, Yang and Jantzen, Friederike and Stacey, Nicola and Langowski, Lukasz and Moubayidin, Laila and Simura, Jan and Ljung, Karin and Ostergaard, Lars}, title = {Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.01.057}, pages = {1038 -- 1046}, year = {2019}, abstract = {Evolution of gene-regulatory sequences is considered the primary driver of morphological variation [1-3]. In animals, the diversity of body plans between distantly related phyla is due to the differential expression patterns of conserved "toolkit' genes [4]. In plants, variation in expression domains similarly underlie most of the reported diversity of organ shape both in natural evolution and in the domestication of crops [5-9]. The heart-shaped fruit from members of the Capsella genus is a morphological novelty that has evolved after Capsella diverged from Arabidopsis similar to 8 mya [10]. Comparative studies of fruit growth in Capsella and Arabidopsis revealed that the difference in shape is caused by local control of anisotropic growth [11]. Here, we show that sequence variation in regulatory domains of the fruit-tissue identity gene, INDEHISCENT (IND), is responsible for expansion of its expression domain in the heart-shaped fruits from Capsella rubella. We demonstrate that expression of this CrIND gene in the apical part of the valves in Capsella contributes to the heart-shaped appearance. While studies on morphological diversity have revealed the importance of cis-regulatory sequence evolution, few examples exist where the downstream effects of such variation have been characterized in detail. We describe here how CrIND exerts its function on Capsella fruit shape by binding sequence elements of auxin biosynthesis genes to activate their expression and ensure auxin accumulation into highly localized maxima in the fruit valves. Thus, our data provide a direct link between changes in expression pattern and altered hormone homeostasis in the evolution of morphological novelty.}, language = {en} } @article{YangEisert2009, author = {Yang, Dong and Eisert, Jens}, title = {Entanglement combing}, issn = {0031-9007}, doi = {10.1103/Physrevlett.103.220501}, year = {2009}, abstract = {We show that all multipartite pure states can, under local operations, be transformed into bipartite pairwise entangled states in a "lossless fashion": An arbitrary distinguished party will keep pairwise entanglement with all other parties after the asymptotic protocol-decorrelating all other parties from each other-in a way that the degree of entanglement of this party with respect to the rest will remain entirely unchanged. The set of possible entanglement distributions of bipartite pairs is also classified. Finally, we point out several applications of this protocol as a useful primitive in quantum information theory.}, language = {en} } @article{BrandaoEisertHorodeckietal.2011, author = {Brandao, F. G. S. L. and Eisert, Jens and Horodecki, M. and Yang, Dong}, title = {Entangled inputs cannot make imperfect quantum channels perfect}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {23}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.230502}, pages = {4}, year = {2011}, abstract = {Entangled inputs can enhance the capacity of quantum channels, this being one of the consequences of the celebrated result showing the nonadditivity of several quantities relevant for quantum information science. In this work, we answer the converse question (whether entangled inputs can ever render noisy quantum channels to have maximum capacity) to the negative: No sophisticated entangled input of any quantum channel can ever enhance the capacity to the maximum possible value, a result that holds true for all channels both for the classical as well as the quantum capacity. This result can hence be seen as a bound as to how "nonadditive quantum information can be.'' As a main result, we find first practical and remarkably simple computable single-shot bounds to capacities, related to entanglement measures. As examples, we discuss the qubit amplitude damping and identify the first meaningful bound for its classical capacity.}, language = {en} } @article{DongYangLehnkuehleretal.2014, author = {Dong, Chao and Yang, Jing and Lehnkuehler, Silke and Kirk, Martin L.}, title = {Pyranopterin dithiolene distortions relevant to electron transfer in xanthine oxidase/dehydrogenase}, series = {Inorganic chemistry}, volume = {53}, journal = {Inorganic chemistry}, number = {14}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/ic500873y}, pages = {7077 -- 7079}, year = {2014}, abstract = {The reducing substrates 4-thiolumazine and 2,4-dithiolumazine have been used to form Mo-IV-product complexes with xanthine oxidase (XO) and xanthine dehydrogenase. These Mo-IV-product complexes display an intense metal-to-ligand charge-transfer (MLCT) band in the near-infrared region of the spectrum. Optical pumping into this MLCT band yields resonance Raman spectra of the Mo site that are devoid of contributions from the highly absorbing FAD and 2Fe2S clusters in the protein. The resonance Raman spectra reveal in-plane bending modes of the bound product and low-frequency molybdenum dithiolene and pyranopterin dithiolene vibrational modes. This work provides keen insight into the role of the pyranopterin dithiolene in electron-transfer reactivity.}, language = {en} } @article{DongYangReschkeetal.2017, author = {Dong, Chao and Yang, Jing and Reschke, Stefan and Leimk{\"u}hler, Silke and Kirk, Martin L.}, title = {Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase}, series = {Inorganic chemistry}, volume = {56}, journal = {Inorganic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.7b00028}, pages = {6830 -- 6837}, year = {2017}, abstract = {The pyranopterin dithiolene (PDT) ligand is an integral component of the molybdenum cofactor (Moco) found in all molybdoenzymes with the sole exception of nitrogenase. However, the roles of the PDT in catalysis are still unknown. The PDT is believed to be bound to the proteins by an extensive hydrogen bonding network, and it has been suggested that these interactions may function to fine-tune Moco for electron- and atom-transfer reactivity in catalysis. Here, we use resonance Raman (rR) spectroscopy to probe Moco-protein interactions using heavy-atom congeners of lumazine, molecules that bind tightly to both wild-type xanthine dehydrogenase (wt-XDH) and its Q102G and Q197A variants following enzymatic hydroxylation to the corresponding violapterin product molecules. The resulting enzyme-product complexes possess intense near-IR absorption, allowing high-quality rR spectra to be collected on wt-XDH and the Q102G and Q197A variants. Small negative frequency shifts relative to wt-XDH are observed for the low-frequency Moco vibrations. These results are interpreted in the context of weak hydrogen-bonding and/or electrostatic interactions between Q102 and the -NH2 terminus of the PDT, and between Q197 and the terminal oxo of the Mo equivalent to O group. The Q102A, Q102G, Q197A, and Q197E variants do not appreciably affect the kinetic parameters k(red) and k(red)/K-D, indicating that a primary role for these glutamine residues is to stabilize and coordinate Moco in the active site of XO family enzymes but to not directly affect the catalytic throughput. Raman frequency shifts between wt-XDH and its Q102G variant suggest that the changes in the electron density at the Mo ion that accompany Mo oxidation during electron-transfer regeneration of the catalytically competent active site are manifest in distortions at the distant PDT amino terminus. This implies a primary role for the PDT as a conduit for facilitating enzymatic electron-transfer reactivity in xanthine oxidase family enzymes.}, language = {en} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} } @article{XuDongJieetal.2022, author = {Xu, Yaolin and Dong, Kang and Jie, Yulin and Adelhelm, Philipp and Chen, Yawei and Xu, Liang and Yu, Peiping and Kim, Junghwa and Kochovski, Zdravko and Yu, Zhilong and Li, Wanxia and LeBeau, James and Shao-Horn, Yang and Cao, Ruiguo and Jiao, Shuhong and Cheng, Tao and Manke, Ingo and Lu, Yan}, title = {Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives}, series = {Avanced energy materials}, volume = {12}, journal = {Avanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200398}, pages = {22}, year = {2022}, abstract = {In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} }