@article{RadaeffCosentinoCipollarietal.2016, author = {Radaeff, Giuditta and Cosentino, Domenico and Cipollari, Paola and Schildgen, Taylor F. and Iadanza, Annalisa and Strecker, Manfred and Darbas, Guldemin and G{\"u}rb{\"u}z, Kemal}, title = {Stratigraphic architecture of the upper Messinian deposits of the Adana Basin (southern Turkey): implications for the Messinian Salinity Crisis and the Taurus petroleum system}, series = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, volume = {135}, journal = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, publisher = {Societ{\~A}  Geologica Italiana}, address = {Roma}, issn = {2038-1719}, doi = {10.3301/IJG.2015.18}, pages = {408 -- 424}, year = {2016}, abstract = {This paper is mainly based on field work carried out on the Messinian deposits of the Adana Basin ( southern Turkey), as well as on the interpretation of seismic reflection profiles to understand 3D geometries of the basin fill. Chronostratigraphic constraints for the Messinian deposits are from micropaleontological studies on foraminifera, ostracods, and calcareous nannofossils, recently carried out on the Messinian deposits of the Adana Basin. Our results indicate that this basin developed in a marginal area strictly related to the Mediterranean realm. The Messinian deposits of the Adana Basin record all the main steps of the Messinian Salinity Crisis ( MSC) that affected the Mediterranean area at the end of the Miocene. The new stratigraphic model for the Messinian deposits of the Adana Basin provided in this work gives new insights into both the MSC and the Taurus petroleum system. Despite their complete correspondence with the MSC, the Messinian deposits of the Adana Basin show some differences with respect to the current conceptual model for the MSC. For example, in the current conceptual model for the MSC, only one regional erosional surface ( MES) characterizes the MSC deposits. In the Adana Basin, two regional erosional surfaces, named MES1 and MES2, separate the Messinian deposits related to the MSC in Lower Evaporites, Resedimented Lower Evaporites ( RLE), and upper Messinian continental deposits containing a late Lago-Mare ostracod assemblage ( mainly fluvial coarse-grained and fine-grained sediments). In some places, Brecciated Limestones lie just above the MES1 and beneath the RLE. In addition, the RLE are thought to be related to the same step that brought to the Messinian halite deposition throughout the Mediterranean, pointing to a hyperhaline environment. In contrast, the fine-grained deposits of the RLE of the Adana Basin show the occurrence of Parathetyan brackish ostracod fauna ( early Lago-Mare ostracod assemblages), which defines an oligohaline depositional environment for the RLE. In terms of hydrocarbon prospecting, the Messinian evaporites of the Adana Basin have been considered as a perfect seal for the active Taurus petroleum system. Our results show that due to the complex stratigraphic architecture of the basin fill and the occurrence of two regional erosional surfaces ( MES1 and MES2), the Messinian evaporites are discontinuously present both in surface and in the subsurface of the Adana Basin. However, seal properties in the Adana Basin could be found in the Lower Pliocene deep marine clays of the Avadan Formation. This work leads to suggest a new stratigraphical model for the Messinian deposits of the Adana Basin, allowing us to amend the classical scheme with respect to the Messinian, and to officially define some new formations within the stratigraphy of the Adana Basin.}, language = {en} } @article{SchildgenYildirimCosentinoetal.2014, author = {Schildgen, Taylor F. and Yildirim, C. and Cosentino, Domenico and Strecker, Manfred}, title = {Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {128}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2013.11.006}, pages = {147 -- 168}, year = {2014}, language = {en} } @article{RacanoJaraMunozCosentinoetal.2020, author = {Racano, Simone and Jara Mu{\~n}oz, Julius and Cosentino, Domenico and Melnick, Daniel}, title = {Variable quaternary uplift along the Southern Margin of the Central Anatolian Plateau inferred from modeling Marine Terrace sequences}, series = {Tectonics}, volume = {39}, journal = {Tectonics}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2019TC005921}, pages = {22}, year = {2020}, abstract = {The southern margin of the Central Anatolian Plateau (CAP) records a strong uplift phase after the early Middle Pleistocene, which has been related to the slab break-off of the subducting Arabian plate beneath the Anatolian microplate. During the last 450 kyr the area underwent an uplift phase at a mean rate of similar to 3.2 m/kyr, as suggested by Middle Pleistocene marine sediments exposed at similar to 1,500 m above sea level. These values are significantly higher than the 1.0-1.5 m/kyr estimated since the Late Pleistocene, suggesting temporal variations in uplift rate. To estimate changes in uplift rate during the Pleistocene we studied the marine terraces along the CAP southern margin, mapping the remnants of the platforms and their associated deposits in the field, and used the TerraceM software to identify the position and elevation of associated shoreline angles. We used shoreline angles and the timing of Quaternary marine sedimentation as constrains for a Landscape Evolution Model that simulates wave erosion of an uplifting coast. We applied random optimization algorithms and minimization statistics to find the input parameters that better reproduce the morphology of CAP marine terraces. The best-fitting uplift rate history suggests a significative increase from 1.9 to 3.5 m/kyr between 500 and 200 kyr, followed by an abrupt decrease to 1.4 m/kyr until the present. Our results agree with slab break-off models, which suggest a strong uplift pulse during slab rupture followed by a smoother decrease.}, language = {en} }