@article{SchuurmansBrinkmannMakoweretal.2018, author = {Schuurmans, Jasper Merijn and Brinkmann, Bregje W. and Makower, Katharina and Dittmann, Elke and Huisman, Jef and Matthijs, Hans C. P.}, title = {Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria}, series = {Harmful algae}, volume = {78}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.07.008}, pages = {47 -- 55}, year = {2018}, abstract = {Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains.}, language = {en} } @article{HackenbergHakanpaeaeCaietal.2018, author = {Hackenberg, Claudia and Hakanpaeae, Johanna and Cai, Fei and Antonyuk, Svetlana and Eigner, Caroline and Meissner, Sven and Laitaoja, Mikko and Janis, Janne and Kerfeld, Cheryl A. and Dittmann, Elke and Lamzin, Victor S.}, title = {Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {27}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1806668115}, pages = {7141 -- 7146}, year = {2018}, abstract = {Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine beta-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria.}, language = {en} } @article{HuLudsinMartinetal.2018, author = {Hu, Chenlin and Ludsin, Stuart A. and Martin, Jay F. and Dittmann, Elke and Lee, Jiyoung}, title = {Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie}, series = {Harmful algae}, volume = {77}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.05.010}, pages = {1 -- 10}, year = {2018}, abstract = {Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable - 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3-37.8\% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8\%) was significantly higher than that during lower UV periods (mean = 9.7\%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study's findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers.}, language = {en} } @article{DehmKrumbholzBaunachetal.2019, author = {Dehm, Daniel and Krumbholz, Julia and Baunach, Martin and Wiebach, Vincent and Hinrichs, Katrin and Guljamow, Arthur and Tabuchi, Takeshi and Jenke-Kodama, Holger and S{\"u}ssmuth, Roderich D. and Dittmann-Th{\"u}nemann, Elke}, title = {Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in nostoc punctiforme}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.9b00240}, pages = {1271 -- 1279}, year = {2019}, abstract = {Filamentous cyanobacteria belong to the most prolific producers of structurally unique and biologically active natural products, yet the majority of biosynthetic gene clusters predicted for these multicellular collectives are currently orphan. Here, we present a systems analysis of secondary metabolite gene expression in the model strain Nostoc punctiforme PCC73102 using RNA-seq and fluorescence reporter analysis. Our data demonstrate that the majority of the cryptic gene clusters are not silent but are expressed with regular or sporadic pattern. Cultivation of N. punctiforme using high-density fermentation overrules the spatial control and leads to a pronounced upregulation of more than 50\% of biosynthetic gene clusters. Our data suggest that a combination of autocrine factors, a high CO2 level, and high light account for the upregulation of individual pathways. Our overarching study not only sheds light on the strategies of filamentous cyanobacteria to share the enormous metabolic burden connected with the production of specialized molecules but provides an avenue for the genome-based discovery of natural products in multicellular cyanobacteria as exemplified by the discovery of highly unusual variants of the tricyclic peptide microviridin.}, language = {en} } @article{BarchewitzGuljamowMeissneretal.2019, author = {Barchewitz, Tino and Guljamow, Arthur and Meißner, Sven and Timm, Stefan and Henneberg, Manja and Baumann, Otto and Hagemann, Martin and Dittmann, Elke}, title = {Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806}, series = {Environmental microbiology}, volume = {21}, journal = {Environmental microbiology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14837}, pages = {4836 -- 4851}, year = {2019}, abstract = {The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community.}, language = {en} } @article{PancraceIshidaBriandetal.2018, author = {Pancrace, Claire and Ishida, Keishi and Briand, Enora and Pichi, Douglas Gatte and Weiz, Annika R. and Guljarmow, Arthur and Scalvenzi, Thibault and Sassoon, Nathalie and Hertweck, Christian and Dittmann, Elke and Gugger, Muriel}, title = {Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.8b00918}, pages = {67 -- 75}, year = {2018}, abstract = {The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.}, language = {en} } @article{MeyerMainzKehretal.2017, author = {Meyer, Sabine and Mainz, Andi and Kehr, Jan-Christoph and Suessmuth, Roderich and Dittmann, Elke}, title = {Prerequisites of Isopeptide Bond Formation in Microcystin Biosynthesis}, series = {ChemBioChem : a European journal of chemical biology}, volume = {18}, journal = {ChemBioChem : a European journal of chemical biology}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4227}, doi = {10.1002/cbic.201700389}, pages = {2376 -- 2379}, year = {2017}, abstract = {The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d-glutamate and -methyl d-aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE-A and McyB-A(2), either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond-forming modules incorporating d-glutamate or d-aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.}, language = {en} } @article{GuljamowBarchewitzGrosseetal.2021, author = {Guljamow, Arthur and Barchewitz, Tino and Große, Rebecca and Timm, Stefan and Hagemann, Martin and Dittmann, Elke}, title = {Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9061265}, pages = {14}, year = {2021}, abstract = {The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell's periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field.}, language = {en} } @misc{GuljamowBarchewitzGrosseetal.2021, author = {Guljamow, Arthur and Barchewitz, Tino and Große, Rebecca and Timm, Stefan and Hagemann, Martin and Dittmann, Elke}, title = {Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1154}, issn = {1866-8372}, doi = {10.25932/publishup-52128}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521287}, pages = {16}, year = {2021}, abstract = {The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell's periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field.}, language = {en} } @article{BaunachChowdhuryStallforthetal.2021, author = {Baunach, Martin and Chowdhury, Somak and Stallforth, Pierre and Dittmann-Th{\"u}nemann, Elke}, title = {The landscape of recombination events that create nonribosomal peptide diversity}, series = {Molecular biology and evolution : MBE}, volume = {38}, journal = {Molecular biology and evolution : MBE}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msab015}, pages = {2116 -- 2130}, year = {2021}, abstract = {Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing andmatching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the A(core) domains, yet domain interfaces and the flexible A(sub) domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.}, language = {en} }