@article{AichnerOttSlowinskietal.2018, author = {Aichner, Bernhard and Ott, Florian and Slowinski, Michal and Norygkiewicz, Agnieszka M. and Brauer, Achim and Sachse, Dirk}, title = {Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-14-1607-2018}, pages = {1607 -- 1624}, year = {2018}, abstract = {While of higher plant origin, a specific source assignment of sedimentary leaf wax n-alkanes remains difficult. In addition, it is unknown how fast a changing catchment vegetation would be reflected in sedimentary leaf wax archives. In particular, for a quantitative interpretation of n-alkane C and H isotope ratios in terms of paleohydrological and paleoecological changes, a better understanding of transfer times and dominant sedimentary sources of leaf wax n-alkanes is required. In this study we tested to what extent compositional changes in leaf wax n-alkanes can be linked to known vegetation changes by comparison with high-resolution palynological data from the same archive. We analyzed leaf wax n-alkane concentrations and distributions in decadal resolution from a sedimentary record from Trzechowskie paleolake (TRZ, northern Poland), covering the Late Glacial to early Holocene (13 360-9940 yr BP). As an additional source indicator of targeted n-alkanes, compound-specific carbon isotopic data have been generated in lower time resolution. The results indicated rapid responses of n-alkane distribution patterns coinciding with major climatic and paleoecological transitions. We found a shift towards higher average chain length (ACL) values at the Allerod-Younger Dryas (YD) transition between 12 680 and 12 600 yr BP, co-evaled with a decreasing contribution of arboreal pollen (mainly Pinus and Betula) and a subsequently higher abundance of pollen derived from herbaceous plants (Poaceae, Cyperaceae, Artemisia), shrubs, and dwarf shrubs (Juniperus and Salix). The termination of the YD was characterized by a successive increase in n-alkane concentrations coinciding with a sharp decrease in ACL values between 11 580 and 11 490 yr BP, reflecting the expansion of woodland vegetation at the YD-Holocene transition. A gradual reversal to longer chain lengths after 11 200 yr BP, together with decreasing n-alkane concentrations, most likely reflects the early Holocene vegetation succession with a decline of Betula. These results show that n-alkane distributions reflect vegetation changes and that a fast (i.e., subdecadal) signal transfer occurred. However, our data also indicate that a standard interpretation of directional changes in biomarker ratios remains difficult. Instead, responses such as changes in ACL need to be discussed in the context of other proxy data. In addition, we find that organic geochemical data integrate different ecological information compared to pollen, since some gymnosperm genera, such as Pinus, produce only a very low amount of n-alkanes and for this reason their contribution may be largely absent from biomarker records. Our results demonstrate that a combination of palynological and n-alkane data can be used to infer the major sedimentary leaf wax sources and constrain leaf wax transport times from the plant source to the sedimentary sink and thus pave the way towards quantitative interpretation of compound-specific hydrogen isotope ratios for paleohydrological reconstructions.}, language = {en} } @article{AichnerHiltPerillonetal.2017, author = {Aichner, Bernhard and Hilt, Sabine and Perillon, Cecile and Gillefalk, Mikael and Sachse, Dirk}, title = {Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {113}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2017.07.021}, pages = {10 -- 16}, year = {2017}, abstract = {Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9\%(n-C-23), -136 +/- 7\%(n-C-25) and -131 +/- 6\%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11\% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12\%) and 15(-172 +/- 15\%). We therefore suggest an average e value of -136 +/- 9\% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40\% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RachEngelsKahmenetal.2017, author = {Rach, Oliver and Engels, S. and Kahmen, A. and Brauer, Achim and Martin-Puertas, C. and van Geel, B. and Sachse, Dirk}, title = {Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker delta D values in lake Meerfelder Maar sediments}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {172}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.019}, pages = {44 -- 54}, year = {2017}, abstract = {One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (ED values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200-2000 varve years BP), terrestrial lipid biomarker ED showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem change was accompanied by large changes in ED values of aquatic lipid biomarkers, such as nC(21) and nC(23) (by between 22 and 30\%(0)). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the Wag value were influenced by changes in n-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid MN values, which then could be easily misinterpreted in terms of hydro climatic changes. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{AichnerMakhmudovRajabovetal.2019, author = {Aichner, Bernhard and Makhmudov, Zafar and Rajabov, Iljomjon and Zhang, Qiong and Pausata, Francesco Salvatore R. and Werner, Martin and Heinecke, Liv and Kuessner, Marie L. and Feakins, Sarah J. and Sachse, Dirk and Mischke, Steffen}, title = {Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL085202}, pages = {13972 -- 13983}, year = {2019}, abstract = {The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.}, language = {en} } @article{MengesHoviusAndermannetal.2019, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Dietze, Michael and Swoboda, Charlie and Cook, Kristen L. and Adhikari, Basanta R. and Vieth-Hillebrand, Andrea and Bonnet, Stephane and Reimann, Tony and Koutsodendris, Andreas and Sachse, Dirk}, title = {Late holocene landscape collapse of a trans-himalayan dryland}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL084192}, pages = {13814 -- 13824}, year = {2019}, abstract = {Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20\% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services.}, language = {en} } @article{NelsonKnohlSachseetal.2017, author = {Nelson, Daniel B. and Knohl, Alexander and Sachse, Dirk and Schefulss, Enno and Kahmen, Ansgar}, title = {Sources and abundances of leaf waxes in aerosols in central Europe}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {198}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2016.11.018}, pages = {299 -- 314}, year = {2017}, abstract = {Atmospheric transport is an understudied mechanism for leaf wax hydrogen isotope applications that contributes to mobilizing and depositing these compounds on the surface of the Earth. While previous efforts have identified the importance of atmospheric leaf wax deposition in remote marine locations, the processes are not well constrained on land in temperate latitudes where lakes are common and sedimentary leaf wax hydrogen isotope values are an attractive tool for understanding past precipitation changes. This work presents results from a field study that was conducted in 2010 and 2011 at Hainich National Park, Germany in order to evaluate the quantity and sources of leaf waxes in the atmosphere. Aerosols were sampled at approximately weekly intervals inside the forest canopy, and n-alkane distributions and hydrogen isotope values were compared with those from major tree species surrounding the sampling site. Despite sampling in what was expected to be a major production center, the distribution and hydrogen isotope values of atmospheric n-alkanes bore little resemblance to those of the local vegetation. Comparison with local meteorological data and to 10-day and 36-h back air mass trajectories indicated shifting effects of winds and temperature, and that mesoscale transport processes were more important than longrange mechanisms. Back trajectories also highlighted source effects, with easterly winds coinciding with relatively lower leaf wax hydrogen isotope values from more continental regions. These results suggest that leaf wax aerosols average over spatial scales that exceed typical surface catchment areas for small lake systems, even in forested areas, yet that the area over which these compounds are derived is still relatively regional. Depositional fluxes were also estimated in order to assess the potential importance of atmospheric transport to sedimentary archives. Although difficult to constrain, these estimates suggest that atmospheric deposition may be non-negligible for lake systems in cases where inputs from rivers or surface runoff are limited. Together, these observations provide new insights on how leaf waxes from different sources are integrated during aeolian transport and the spatial scales over which these processes occur.}, language = {en} } @article{ScheingrossHoviusDellingeretal.2019, author = {Scheingross, Joel S. and Hovius, Niels and Dellinger, M. and Hilton, R. G. and Repasch, M. and Sachse, Dirk and Grocke, D. R. and Vieth-Hillebrand, Andrea and Turowski, Jens M.}, title = {Preservation of organic carbon during active fluvial transport and particle abrasion}, series = {Geology}, volume = {47}, journal = {Geology}, number = {10}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G46442.1}, pages = {958 -- 962}, year = {2019}, abstract = {Oxidation of particulate organic carbon (POC) during fluvial transit releases CO2 to the atmosphere and can influence global climate. Field data show large POC oxidation fluxes in lowland rivers; however, it is unclear if POC losses occur predominantly during in-river transport, where POC is in continual motion within an aerated environment, or during transient storage in floodplains, which may be anoxic. Determination of the locus of POC oxidation in lowland rivers is needed to develop process-based models to predict POC losses, constrain carbon budgets, and unravel links between climate and erosion. However, sediment exchange between rivers and floodplains makes differentiating POC oxidation during in-river transport from oxidation during floodplain storage difficult. Here, we isolated inriver POC oxidation using flume experiments transporting petrogenic and biospheric POC without floodplain storage. Our experiments showed solid phase POC losses of 0\%-10\% over similar to 10(3) km of fluvial transport, compared to similar to 7\% to >50\% losses observed in rivers over similar distances. The production of dissolved organic carbon (DOC) and dissolved rhenium (a proxy for petrogenic POC oxidation) was consistent with small POC lasses, and replicate experiments in static water tanks gave similar results. Our results show that fluvial sediment transport, particle abrasion, and turbulent mixing have a minimal role on POC oxidation, and they suggest that POC losses may accrue primarily in floodplain storage.}, language = {en} } @article{RepaschWittmannScheingrossetal.2020, author = {Repasch, Marisa and Wittmann, Hella and Scheingross, Joel S. and Sachse, Dirk and Szupiany, Ricardo and Orfeo, Oscar and Fuchs, Margret and Hovius, Niels}, title = {Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be}, series = {Journal of Geophysical Research: Earth Surface}, volume = {125}, journal = {Journal of Geophysical Research: Earth Surface}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9011}, doi = {10.1029/2019JF005419}, pages = {19}, year = {2020}, abstract = {Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230\% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems.}, language = {en} } @article{KahmenSchefussSachse2013, author = {Kahmen, Ansgar and Schefuss, Enno and Sachse, Dirk}, title = {Leaf water deuterium enrichment shapes leaf wax n-alkane delta D values of angiosperm plants I experimental evidence and mechanistic insights}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {111}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2012.09.003}, pages = {39 -- 49}, year = {2013}, abstract = {Leaf wax n-alkanes of terrestrial plants are long-chain hydrocarbons that can persist in sedimentary records over geologic timescales. Since meteoric water is the primary source of hydrogen used in leaf wax synthesis, the hydrogen isotope composition (delta D value) of these biomarkers contains information on hydrological processes. Consequently, leaf wax n-alkane delta D values have been advocated as powerful tools for paleohydrological research. The exact kind of hydrological information that is recorded in leaf wax n-alkanes remains, however, unclear because critical processes that determine their delta D values have not yet been resolved. In particular the effects of evaporative deuterium (D)-enrichment of leaf water on the delta D values of leaf wax n-alkanes have not yet been directly assessed and quantified. Here we present the results of a study where we experimentally tested if and by what magnitude evaporative D-enrichment of leaf water affects the delta D of leaf wax n-alkanes in angiosperm C3 and C4 plants. Our study revealed that n-alkane delta D values of all plants that we investigated were affected by evaporative D-enrichment of leaf water. For dicotyledonous plants we found that the full extent of leaf water evaporative D-enrichment is recorded in leaf wax n-alkane delta D values. For monocotyledonous plants we found that between 18\% and 68\% of the D-enrichment in leaf water was recorded in the delta D values of their n-alkanes. We hypothesize that the different magnitudes by which evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants is the result of differences in leaf growth and development between these plant groups. Our finding that the evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants albeit at different magnitudes - has important implications for the interpretation of leaf wax n-alkane delta D values from paleohydrological records. In addition, our finding opens the door to employ delta D values of leaf wax n-alkanes as new ecohydrological proxies for evapotranspiration that can be applied in contemporary plant and ecosystem research.}, language = {en} } @article{RomeroVianaKienelWilkesetal.2013, author = {Romero-Viana, Lidia and Kienel, Ulrike and Wilkes, Heinz and Sachse, Dirk}, title = {Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (Mexico)}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {106}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2012.12.017}, pages = {490 -- 500}, year = {2013}, abstract = {In this study, we evaluated the potential of the hydrogen isotopic composition of algal lipid biomarkers as a proxy for past hydroclimatic variability in hypersaline Isabel Lake, Mexico (Eastern Pacific). We compared rainfall variability recorded in the region over the last 65 years with changes in delta D values of the most abundant compounds preserved in the uppermost 16 cm of lake sediment. Changes in delta D values of the 1,15-C-32 diol (delta D-diol), a specific biomarker of algal populations, were related to rainfall variability; specifically, n-alkyl diols were more deuterium-enriched (depleted) during wetter (drier) periods. Strikingly, neither the magnitude of lipid biomarker isotopic changes over interannual timescales (of up to 70-80 parts per thousand) nor the direction of that variability can be explained by changes in delta D values of the water source or salinity fluctuations (approximately 30 on the practical salinity scale) controlled by seasonal rainfall. However, changes in sedimentary biomarker composition, higher total organic carbon content and less negative delta C-13 values of the 1,15-C-32 diol indicate enhanced algal growth during wetter periods. We find that these conditions result in less negative delta D values of n-alkyl diols. We hypothesize that due to higher lipid demand during enhanced algal growth, an increasing proportion of hydrogen for lipid synthesis is derived from the cytosol via oxidation of polysaccharides, which may cause a deuterium enrichment of the acetogenic compounds. This study has significant implications for paleohydrological reconstructions using algal lipid delta D values, particularly in highly seasonal environments such as Isabel Lake. In such environments, delta D values of specific algal lipid biomarkers may not record the full seasonal cycle in source water delta D but appear to be mainly controlled by the physiological state of algal populations. Our data provide the first evidence that changes in D/H fractionation due to algal growth conditions can be recorded in sediments. For paleoclimate reconstructions in such environments, algal growth conditions should be constrained with additional proxy data (delta C-13 values of the same biomarkers), as the net D/H fractionation between water and lipids may not have been constant over time.}, language = {en} }