@article{FariasVargasTassaraetal.2010, author = {Far{\"i}as, Marcelo and Vargas, Gabriel and Tassara, Andr{\´e}s and Carretier, S{\´e}bastien and Baize, St{\´e}phane and Melnick, Daniel and Bataille, Klaus}, title = {Land-level changes produced by the M-w 8.8 2010 Chilean earthquake}, issn = {0036-8075}, doi = {10.1126/science.1192094}, year = {2010}, abstract = {We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an ~500-kilometers- long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event.}, language = {en} } @unpublished{MelnickMorenoMotaghetal.2013, author = {Melnick, Daniel and Moreno, Marcos and Motagh, Mahdi and Cisternas, Marco and Wesson, Robert L.}, title = {Splay fault slip during the M-w 8.8 2010 maule Chile earthquake reply}, series = {Geology}, volume = {41}, journal = {Geology}, number = {12}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G34825Y.1}, pages = {E310 -- E310}, year = {2013}, language = {en} } @article{MelnickMorenoMotaghetal.2012, author = {Melnick, Daniel and Moreno, Marcos and Motagh, Mahdi and Cisternas, Marco and Wesson, Robert L.}, title = {Splay fault slip during the M-w 8.8 2010 Maule Chile earthquake}, series = {Geology}, volume = {40}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G32712.1}, pages = {251 -- 254}, year = {2012}, abstract = {Splay faults are thrusts that emerge from the plate boundaries of subduction zones. Such structures have been mapped at several convergent margins and their activity commonly ascribed to large megathrust earthquakes. However, the behavior of splay faults during the earthquake cycle is poorly constrained because typically these structures are located offshore and are difficult to access. Here we use geologic mapping combined with space and land geodesy, as well as offshore sonar data, to document surface-fault ruptures and coastal uplift at Isla Santa Maria in south-central Chile (37 degrees S) caused by the 27 February 2010 Maule earthquake (M-w 8.8). During the earthquake, the island was tilted parallel to the margin, and normal faults ruptured the surface and adjacent ocean bottom. We associate tilt and crestal normal faulting with growth of an anticline above a blind reverse fault rooted in the Nazca-South America plate boundary, which slipped during the Maule earthquake. The splay fault system has formed in an area of reduced coseismic plate-boundary slip, suggesting that anelastic deformation in the upper plate may have restrained the 2010 megathrust rupture. Surface fault breaks were accompanied by prominent discharge of fluids. Our field observations support the notion that splay faulting may frequently complement and influence the rupture of subduction-zone earthquakes.}, language = {en} } @article{MorenoMelnickRosenauetal.2011, author = {Moreno, Marcelo Spegiorin and Melnick, Daniel and Rosenau, M. and Bolte, John and Klotz, Jan and Echtler, Helmut Peter and B{\´a}ez, Juan Carlos and Bataille, Klaus and Chen, J. and Bevis, M. and Hase, H. and Oncken, Onno}, title = {Heterogeneous plate locking in the South-Central Chile subduction zone building up the next great earthquake}, series = {Earth \& planetary science letters}, volume = {305}, journal = {Earth \& planetary science letters}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.03.025}, pages = {413 -- 424}, year = {2011}, abstract = {We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36 degrees S -46 degrees S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (M-w = 9.5) and 2010 (M-w = 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the similar to 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M similar to 8 event if triggered to fail by stress transfer from the 2010 event.}, language = {en} } @article{LiMorenoRosenauetal.2014, author = {Li, Shaoyang and Moreno, Marcos and Rosenau, Matthias and Melnick, Daniel and Oncken, Onno}, title = {Splay fault triggering by great subduction earthquakes inferred from finite element models}, series = {Geophysical research letters}, volume = {41}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2013GL058598}, pages = {385 -- 391}, year = {2014}, abstract = {We have investigated the influence that megathrust earthquake slip has on the activation of splay faults using a 2-D finite element method (FEM), taking into account the effects of gravity and variations in the frictional strength properties of splay faults. We simulated both landward-dipping and seaward-dipping splay fault geometries, and imposed depth-variable slip distributions of subduction events. Our results indicate that the two types of splay fault exhibit a similar behavior, with variations in frictional properties along the faults affecting only the seismic magnitude. The triggering process is controlled by a critical depth. Megathrust slip concentrated at depths shallower than the critical depth will favor normal displacement, while megathrust slip concentrated at depths deeper than the critical depth is likely to result in reverse motion. Our results thus provide a useful tool for predicting the activation of secondary faults and may have direct implications for tsunami hazard research.}, language = {en} } @article{WessonMelnickCisternasetal.2015, author = {Wesson, Robert L. and Melnick, Daniel and Cisternas, Marco and Moreno, Marcos and Ely, Lisa L.}, title = {Vertical deformation through a complete seismic cycle at Isla Santa Maria, Chile}, series = {Nature geoscience}, volume = {8}, journal = {Nature geoscience}, number = {7}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/NGEO2468}, pages = {547 -- U157}, year = {2015}, abstract = {Individual great earthquakes are posited to release the elastic strain energy that has accumulated over centuries by the gradual movement of tectonic plates(1,2). However, knowledge of plate deformation during a complete seismic cycle-two successive great earthquakes and the intervening interseismic period-remains incomplete(3). A complete seismic cycle began in south-central Chile in 1835 with an earthquake of about magnitude 8.5 (refs 4,5) and ended in 2010 with a magnitude 8.8 earthquake(6). During the first earthquake, an uplift of Isla Santa Maria by 2.4 to 3m was documented(4,5). In the second earthquake, the island was uplifted(7) by 1.8 m. Here we use nautical surveys made in 1804, after the earthquake in 1835 and in 1886, together with modern echo sounder surveys and GPS measurements made immediately before and after the 2010 earthquake, to quantify vertical deformation through the complete seismic cycle. We find that in the period between the two earthquakes, Isla Santa Maria subsided by about 1.4 m. We simulate the patterns of vertical deformation with a finite-element model and find that they agree broadly with predictions from elastic rebound theory(2). However, comparison with geomorphic and geologic records of millennial coastline emergence(8,9) reveal that 10-20\% of the vertical uplift could be permanent.}, language = {en} } @article{JaramilloDuganHubbardetal.2012, author = {Jaramillo, Eduardo and Dugan, Jenifer E. and Hubbard, David M. and Melnick, Daniel and Manzano, Mario and Duarte, Cristian and Campos, Cesar and Sanchez, Roland}, title = {Ecological implications of extreme events footprints of the 2010earthquake along the chilean coast}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0035348}, pages = {8}, year = {2012}, abstract = {Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 M-w 8.8 earthquake along the entire rupture zone (ca. 34-38 degrees S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky subtidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems.}, language = {en} } @article{MelnickCisternasMorenoetal.2012, author = {Melnick, Daniel and Cisternas, Marco and Moreno, Marcos and Norambuena, Ricardo}, title = {Estimating coseismic coastal uplift with an intertidal mussel calibration for the 2010 Maule Chile earthquake (M-w=8.8)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {42}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2012.03.012}, pages = {29 -- 42}, year = {2012}, abstract = {Coseismic coastal uplift has been quantified using sessile intertidal organisms after several great earthquakes following FitzRoy's pioneer measurements in 1835. A dense survey of such markers may complement space geodetic data to obtain an accurate distribution of fault slip and earthquake segmentation. However, uplift estimates based on diverse intertidal organisms tend to differ, because of few methodological and comparative studies. Here, we calibrate and estimate coastal uplift in the southern segment of the 2010 Maule, Chile earthquake (M-w = 8.8) using > 1100 post-earthquake elevation measurements of the sessile mussel Perumytilus purpuratus. This mussel is the predominant competitor for rocky shores all along the Pacific coast of South America, where it forms fringes or belts distinctively in the middle intertidal zone. These belts are centered at mean sea level and their width should equal one third of the tidal range. We measured belt widths close to this value at 40\% of the sites, but overall widths are highly variable due to the unevenness in belt tops; belt bases, in turn, are rather regular. Belt top unevenness apparently results from locally-enhanced wave splash, whereas belt base evenness is controlled by predation. According to our measurements made beyond the earthquake rupture, the belt base is at the bottom of the middle intertidal zone, and thus we propose to estimate coastal uplift using the belt base mean elevation plus one sixth of the tidal range to reach mean sea level. Within errors our estimates agree with GPS displacements but differ from other methods. Comparisons of joint inversions for megathrust slip suggest combining space geodetic data with estimates from intertidal organisms may locally increase the detail of slip distributions.}, language = {en} } @article{RodilJaramilloHubbardetal.2015, author = {Rodil, Iv{\´a}n F. and Jaramillo, Eduardo and Hubbard, David M. and Dugan, Jenifer E. and Melnick, Daniel and Velasquez, Carlos}, title = {Responses of Dune Plant Communities to Continental Uplift from a Major Earthquake: Sudden Releases from Coastal Squeeze}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0124334}, pages = {18}, year = {2015}, abstract = {Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5 degrees S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural and human induced disturbances, and promotes the development of dune vegetation as natural barriers can provide societal and conservation benefits in coastal ecosystems.}, language = {en} } @article{MelnickMorenoCisternasetal.2012, author = {Melnick, Daniel and Moreno, Marcos and Cisternas, Marco and Tassara, Andres}, title = {Darwin seismic gap closed by the 2010 Maule earthquake}, series = {Andean geology}, volume = {39}, journal = {Andean geology}, number = {3}, publisher = {Servicio Nacional de Geolog{\`i}a y Miner{\`i}a}, address = {Santiago}, issn = {0718-7092}, doi = {10.5027/andgeoV39n3-a11}, pages = {558 -- 563}, year = {2012}, abstract = {The Maule earthquake (Mw 8.8) that affected south-central Chile on February 27, 2010 was preceded by the 1835 event documented by FitzRoy and Darwin. The relation between both events has been controversial. Fault slip in 2010 estimated by Lorito et al. (2011) is less than expected from 175 years of strain accumulation, leading them to conclude only limited overlap between the 2010 and 1835 events, and that a Mw 7.5-8 event could still strike the Concepcion region. However, Lorito et al.'s model was based on displacements obtained from only 6 GPS stations and underpredicts observations from recent studies. Here we show that an alternative model based on 169 GPS displacements reproduces the data better, suggesting Lorito et al.'s main conclusion is not correct. Based on a slip deficit map, we suggest the seismic gap opened in 1835 was most likely closed in 2010.}, language = {en} }