@article{BergEllisonSanchezRamirezetal.2019, author = {Berg, Trystyn A. M. and Ellison, Sara L. and Sanchez-Ramirez, Ruben and Lopez, Sebastian and Becker, George D. and Christensen, Lise and Cupani, Guido and Denney, Kelly D. and Worseck, Gabor}, title = {Sub-damped Lyman alpha systems in the XQ-100 survey - I. Identification and contribution to the cosmological H I budget}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2012}, pages = {4356 -- 4369}, year = {2019}, language = {en} } @article{DeFrenneRodriguezSanchezCoomesetal.2013, author = {De Frenne, Pieter and Rodriguez-Sanchez, Francisco and Coomes, David Anthony and B{\"a}ten, Lander and Verstr{\"a}ten, Gorik and Vellend, Mark and Bernhardt-R{\"o}mermann, Markus and Brown, Carissa D. and Brunet, J{\"o}rg and Cornelis, Johnny and Decocq, Guillaume M. and Dierschke, Hartmut and Eriksson, Ove and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jenkins, Michael A. and Kelly, Daniel L. and Kirby, Keith J. and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schultz, Jan and Sonnier, Gregory and Van Calster, Hans and Waller, Donald M. and Walther, Gian-Reto and White, Peter S. and Woods, Kerry D. and Wulf, Monika and Graae, Bente Jessen and Verheyen, Kris}, title = {Microclimate moderates plant responses to macroclimate warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {46}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1311190110}, pages = {18561 -- 18565}, year = {2013}, abstract = {Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.}, language = {en} } @article{StarkenburgMartinYouakimetal.2017, author = {Starkenburg, Else and Martin, Nicolas and Youakim, Kris and Aguado, David S. and Allende Prieto, Carlos and Arentsen, Anke and Bernard, Edouard J. and Bonifacio, Piercarlo and Caffau, Elisabetta and Carlberg, Raymond G. and Cote, Patrick and Fouesneau, Morgan and Francois, Patrick and Franke, Oliver and Gonzalez Hernandez, Jonay I. and Gwyn, Stephen D. J. and Hill, Vanessa and Ibata, Rodrigo A. and Jablonka, Pascale and Longeard, Nicolas and McConnachie, Alan W. and Navarro, Julio F. and Sanchez-Janssen, Ruben and Tolstoy, Eline and Venn, Kim A.}, title = {The Pristine survey - I. Mining the Galaxy for the most metal-poor stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1068}, pages = {2587 -- 2604}, year = {2017}, abstract = {We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H\&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.}, language = {en} } @article{BerrahSanchezGonzalezJureketal.2019, author = {Berrah, N. and S{\´a}nchez-Gonz{\´a}lez, {\´A}lvaro and Jurek, Zoltan and Obaid, Razib and Xiong, H. and Squibb, R. J. and Osipov, T. and Lutman, A. and Fang, L. and Barillot, T. and Bozek, J. D. and Cryan, J. and Wolf, T. J. A. and Rolles, Daniel and Coffee, R. and Schnorr, Kirsten and Augustin, S. and Fukuzawa, Hironobu and Motomura, K. and Niebuhr, Nina Isabelle and Frasinski, L. J. and Feifel, Raimund and Schulz, Claus-Peter and Toyota, Kenji and Son, Sang-Kil and Ueda, K. and Pfeifer, T. and Marangos, J. P. and Santra, Robin}, title = {Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization}, series = {Nature physics}, volume = {15}, journal = {Nature physics}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/s41567-019-0665-7}, pages = {1279 -- 1301}, year = {2019}, abstract = {X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.}, language = {en} } @article{RienksWimmerSanchezBarrigaetal.2019, author = {Rienks, Emile D. L. and Wimmer, S. and Sanchez-Barriga, Jaime and Caha, O. and Mandal, Partha Sarathi and Ruzicka, J. and Ney, A. and Steiner, H. and Volobuev, V. V. and Groiss, H. and Albu, M. and Kothleitner, G. and Michalicka, J. and Khan, S. A. and Minar, J. and Ebert, H. and Bauer, G. and Freyse, Friedrich and Varykhalov, Andrei and Rader, Oliver and Springholz, Gunther}, title = {Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures}, series = {Nature : the international weekly journal of science}, volume = {576}, journal = {Nature : the international weekly journal of science}, number = {7787}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-019-1826-7}, pages = {423 -- 428}, year = {2019}, abstract = {Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications(1-8). The edge states are hosted by a magnetic energy gap at the Dirac point(2), but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, T-C (ref. (8)). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below T-C. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted(9). Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap(10). Mn-doped Bi2Se3 (ref. (11)) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.}, language = {en} } @article{HlawenkaSiemensmeyerWeschkeetal.2018, author = {Hlawenka, Peter and Siemensmeyer, Konrad and Weschke, Eugen and Varykhalov, Andrei and Sanchez-Barriga, Jaime and Shitsevalova, Natalya Y. and Dukhnenko, A. V. and Filipov, V. B. and Gabani, Slavomir and Flachbart, Karol and Rader, Oliver and Rienks, Emile D. L.}, title = {Samarium hexaboride is a trivial surface conductor}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-02908-7}, pages = {7}, year = {2018}, abstract = {SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the (Gamma) over bar state to appear Rashba split and explain the prominent (X) over bar state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.}, language = {en} } @article{ZhengLuanSofianopoulouetal.2020, author = {Zheng, Ju-Sheng and Luan, Jian'an and Sofianopoulou, Eleni and Imamura, Fumiaki and Stewart, Isobel D. and Day, Felix R. and Pietzner, Maik and Wheeler, Eleanor and Lotta, Luca A. and Gundersen, Thomas E. and Amiano, Pilar and Ardanaz, Eva and Chirlaque, Maria-Dolores and Fagherazzi, Guy and Franks, Paul W. and Kaaks, Rudolf and Laouali, Nasser and Mancini, Francesca Romana and Nilsson, Peter M. and Onland-Moret, N. Charlotte and Olsen, Anja and Overvad, Kim and Panico, Salvatore and Palli, Domenico and Ricceri, Fulvio and Rolandsson, Olov and Spijkerman, Annemieke M. W. and Sanchez, Maria-Jose and Schulze, Matthias Bernd and Sala, Nuria and Sieri, Sabina and Tjonneland, Anne and Tumino, Rosario and van der Schouw, Yvonne T. and Weiderpass, Elisabete and Riboli, Elio and Danesh, John and Butterworth, Adam S. and Sharp, Stephen J. and Langenberg, Claudia and Forouhi, Nita G. and Wareham, Nicholas J.}, title = {Plasma vitamin C and type 2 diabetes}, series = {Diabetes care}, volume = {44}, journal = {Diabetes care}, number = {1}, publisher = {American Diabetes Association}, address = {Alexandria}, issn = {0149-5992}, doi = {10.2337/dc20-1328}, pages = {98 -- 106}, year = {2020}, abstract = {OBJECTIVE: Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS: We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS: We identified 11 genomic regions associated with plasma vitamin C (P < 5 x 10(-8)), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95\% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95\% CI 0.96, 1.10). CONCLUSIONS: These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.}, language = {en} } @misc{HlawenkaSiemensmeyerWeschkeetal.2018, author = {Hlawenka, Peter and Siemensmeyer, Konrad and Weschke, Eugen and Varykhalov, Andrei and S{\´a}nchez-Barriga, Jaime and Shitsevalova, Natalya Y. and Dukhnenko, A.V. and Filipov, V. B. and Gab{\´a}ni, Slavomir and Flachbart, Karol and Rader, Oliver and Rienks, Emile D. L.}, title = {Samarium hexaboride is a trivial surface conductor}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {612}, issn = {1866-8372}, doi = {10.25932/publishup-42421}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424213}, pages = {7}, year = {2018}, abstract = {SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the (Gamma) over bar state to appear Rashba split and explain the prominent (X) over bar state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.}, language = {en} }