@article{OttoKellermannThiekenetal.2018, author = {Otto, Antje and Kellermann, Patric and Thieken, Annegret and Costa, Maria Manez and Carmona, Maria and Bubeck, Philip}, title = {Risk reduction partnerships in railway transport infrastructure in an alpine environment}, series = {International journal of disaster risk reduction}, volume = {33}, journal = {International journal of disaster risk reduction}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2018.10.025}, pages = {385 -- 397}, year = {2018}, abstract = {The transport sector is crucial for the functioning of modern societies and their economic welfares. However, it is vulnerable to natural hazards since damage and disturbances appear recurrently. Risk management of transport infrastructure is a complex task that usually involves various stakeholders from the public and private sector. Related scientific knowledge, however, is limited so far. Therefore, this paper presents detailed information on the risk management of the Austrian railway operator gathered through literature studies, in interviews, meetings and workshops. The findings reveal three decision making levels of risk reduction: 1) a superordinate level for the negotiation of frameworks and guidelines, 2) a regional to local level for the planning and implementation of structural measures and 3) a regional to local level for non-structural risk reduction measures and emergency management. On each of these levels, multi-sectoral partnerships exist that aim at reducing the risk to railway infrastructure. Chosen partnerships are evaluated applying the Capital Approach Framework and some collaborations are analyzed considering the flood and landslide events in June 2013. The evaluation reveals that the risk management of the railway operator and its partners has been successful, but there is still potential for enhancement. Difficulties are seen for instance in obtaining continuity of employees and organizational structures which can affect personal contacts and mutual trust and might hamper sharing data and experiences. Altogether, the case reveals the importance of multi-sectoral partnerships that are seen as a crucial element of risk management in the Sendai Framework for Disaster Risk Reduction 2015-2030.}, language = {en} } @article{WarszawskiKrieglerLentonetal.2021, author = {Warszawski, Lila and Kriegler, Elmar and Lenton, Timothy M. and Gaffney, Owen and Jacob, Daniela and Klingenfeld, Daniel and Koide, Ryu and Costa, Mar{\´i}a M{\´a}{\~n}ez and Messner, Dirk and Nakicenovic, Nebojsa and Schellnhuber, Hans Joachim and Schlosser, Peter and Takeuchi, Kazuhiko and van der Leeuw, Sander and Whiteman, Gail and Rockstr{\"o}m, Johan}, title = {All options, not silver bullets, needed to limit global warming to 1.5 °C}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {6}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abfeec}, pages = {15}, year = {2021}, abstract = {Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15-22 Gt CO2 (16-22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039-2061 (2049-2057 interquartile range).}, language = {en} }