@article{HesseKlierSgarzietal.2018, author = {Hesse, Julia and Klier, Dennis Tobias and Sgarzi, Massimo and Nsubuga, Anne and Bauer, Christoph and Grenzer, Joerg and H{\"u}bner, Rene and Wislicenus, Marcus and Joshi, Tanmaya and Kumke, Michael Uwe and Stephan, Holger}, title = {Rapid Synthesis of Sub-10nm Hexagonal NaYF4-Based Upconverting Nanoparticles using Therminol((R))66}, series = {ChemistryOpen : including thesis treasury}, volume = {7}, journal = {ChemistryOpen : including thesis treasury}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201700186}, pages = {159 -- 168}, year = {2018}, abstract = {We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects.}, language = {en} } @article{HartmannWaiHuetal.2016, author = {Hartmann, Bianca and Wai, Timothy and Hu, Hao and MacVicar, Thomas and Musante, Luciana and Fischer-Zirnsak, Bj{\"o}rn and Stenzel, Werner and Gr{\"a}f, Ralph and van den Heuvel, Lambert and Ropers, Hans-Hilger and Wienker, Thomas F. and H{\"u}bner, Christoph and Langer, Thomas and Kaindl, Angela M.}, title = {Homozygous YME1L1 Mutation Causes Mitochondriopathy with Optic Atrophy and Mitochondrial Network Fragmentation}, series = {eLife}, volume = {5}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.16078}, pages = {1156 -- 1165}, year = {2016}, abstract = {Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.}, language = {en} } @inproceedings{TavangarianSchroederIgeletal.2013, author = {Tavangarian, Djamshid and Schroeder, Ulrik and Igel, Christoph and Magenheim, Johannes and Kundisch, Dennis and Beutner, Marc and Herrmann, Philipp and Whittaker, Michael and Reinhardt, Wolfgang and Zoyke, Andrea and Elbeshausen, Stefanie and Griesbaum, Joachim and Koelle, Ralph and Kneiphoff, Anika Hanna and Mauch, Martina and H{\"u}bner, Sandra and Walter, Satjawan and Dittler, Ullrich and Baumann, Annette and Reeh, Lucas and Beuster, Liane and Elkina, Margarita and Fortenbacher, Albrecht and Kappe, Leonard and Merceron, Agathe and Pursian, Andreas and Schwarzrock, Sebastian and Wenzlaff, Boris and Hilse, Michael and Lucke, Ulrike}, title = {E-Learning Symposium 2012}, editor = {Lucke, Ulrike}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-6162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62661}, pages = {77}, year = {2013}, abstract = {Dieser Tagungsband beinhaltet die auf dem E-Learning Symposium 2012 an der Universit{\"a}t Potsdam vorgestellten Beitr{\"a}ge zu aktuellen Anwendungen, innovativen Prozesse und neuesten Ergebnissen im Themenbereich E-Learning. Lehrende, E-Learning-Praktiker und -Entscheider tauschten ihr Wissen {\"u}ber etablierte und geplante Konzepte im Zusammenhang mit dem Student-Life-Cycle aus. Der Schwerpunkt lag hierbei auf der unmittelbaren Unterst{\"u}tzung von Lehr- und Lernprozessen, auf Pr{\"a}sentation, Aktivierung und Kooperation durch Verwendung von neuen und etablierten Technologien.}, language = {de} } @article{HuebnerKlessmannTenfelde2005, author = {H{\"u}bner, Peter and Klessmann, Christoph and Tenfelde, Klaus}, title = {Einleitung}, isbn = {3- 412-18705-4}, year = {2005}, language = {de} } @misc{HesseKlierSgarzietal.2018, author = {Hesse, Julia and Klier, Dennis Tobias and Sgarzi, Massimo and Nsubuga, Anne and Bauer, Christoph and Grenzer, J{\"o}rg and H{\"u}bner, Ren{\´e} and Wislicenus, Marcus and Joshi, Tanmaya and Kumke, Michael Uwe and Stephan, Holger}, title = {Rapid synthesis of sub-10 nm hexagonal NaYF4-based upconverting nanoparticles using Therminol® 66}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {613}, issn = {1866-8372}, doi = {10.25932/publishup-42351}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423515}, pages = {10}, year = {2018}, abstract = {We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects.}, language = {en} }