@article{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivieres, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Martinot, Marie-Laure Paillere and Nees, Frauke and Orfanos, Dimitri Papadopoulos and Paus, Tomas and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, publisher = {Nature Publ. Group}, address = {New York}, organization = {IMAGEN Consortium}, issn = {2158-3188}, doi = {10.1038/s41398-018-0222-7}, pages = {11}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @article{SchadGarbusowFriedeletal.2018, author = {Schad, Daniel and Garbusow, Maria and Friedel, Eva and Sommer, Christian and Sebold, Miriam Hannah and H{\"a}gele, Claudia and Bernhardt, Nadine and Nebe, Stephan and Kuitunen-Paul, S{\"o}ren and Liu, Shuyan and Eichmann, Uta and Beck, Anne and Wittchen, Hans-Ulrich and Walter, Henrik and Sterzer, Philipp and Zimmermann, Ulrich S. and Smolka, Michael N. and Schlagenhauf, Florian and Huys, Quentin J. M. and Heinz, Andreas and Rapp, Michael Armin}, title = {Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk}, series = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, volume = {269}, journal = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0940-1334}, doi = {10.1007/s00406-017-0860-4}, pages = {295 -- 308}, year = {2018}, abstract = {The influence of Pavlovian conditioned stimuli on ongoing behavior may contribute to explaining how alcohol cues stimulate drug seeking and intake. Using a Pavlovian-instrumental transfer task, we investigated the effects of alcohol-related cues on approach behavior (i.e., instrumental response behavior) and its neural correlates, and related both to the relapse after detoxification in alcohol-dependent patients. Thirty-one recently detoxified alcohol-dependent patients and 24 healthy controls underwent instrumental training, where approach or non-approach towards initially neutral stimuli was reinforced by monetary incentives. Approach behavior was tested during extinction with either alcohol-related or neutral stimuli (as Pavlovian cues) presented in the background during functional magnetic resonance imaging (fMRI). Patients were subsequently followed up for 6 months. We observed that alcohol-related background stimuli inhibited the approach behavior in detoxified alcohol-dependent patients (t = -3.86, p < .001), but not in healthy controls (t = -0.92, p = .36). This behavioral inhibition was associated with neural activation in the nucleus accumbens (NAcc) (t((30)) = 2.06, p < .05). Interestingly, both the effects were only present in subsequent abstainers, but not relapsers and in those with mild but not severe dependence. Our data show that alcohol-related cues can acquire inhibitory behavioral features typical of aversive stimuli despite being accompanied by a stronger NAcc activation, suggesting salience attribution. The fact that these findings are restricted to abstinence and milder illness suggests that they may be potential resilience factors.}, language = {en} } @article{GarbusowNebeSommeretal.2019, author = {Garbusow, Maria and Nebe, Stephan and Sommer, Christian and Kuitunen-Paul, S{\"o}ren and Sebold, Miriam Hannah and Schad, Daniel and Friedel, Eva and Veer, Ilya M. and Wittchen, Hans-Ulrich and Rapp, Michael Armin and Ripke, Stephan and Walter, Henrik and Huys, Quentin J. M. and Schlagenhauf, Florian and Smolka, Michael N. and Heinz, Andreas}, title = {Pavlovian-To-Instrumental Transfer and Alcohol Consumption in Young Male Social Drinkers}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2077-0383}, doi = {10.3390/jcm8081188}, pages = {14}, year = {2019}, abstract = {In animals and humans, behavior can be influenced by irrelevant stimuli, a phenomenon called Pavlovian-to-instrumental transfer (PIT). In subjects with substance use disorder, PIT is even enhanced with functional activation in the nucleus accumbens (NAcc) and amygdala. While we observed enhanced behavioral and neural PIT effects in alcohol-dependent subjects, we here aimed to determine whether behavioral PIT is enhanced in young men with high-risk compared to low-risk drinking and subsequently related functional activation in an a-priori region of interest encompassing the NAcc and amygdala and related to polygenic risk for alcohol consumption. A representative sample of 18-year old men (n = 1937) was contacted: 445 were screened, 209 assessed: resulting in 191 valid behavioral, 139 imaging and 157 genetic datasets. None of the subjects fulfilled criteria for alcohol dependence according to the Diagnostic and Statistical Manual of Mental Disorders-IV-TextRevision (DSM-IV-TR). We measured how instrumental responding for rewards was influenced by background Pavlovian conditioned stimuli predicting action-independent rewards and losses. Behavioral PIT was enhanced in high-compared to low-risk drinkers (b = 0.09, SE = 0.03, z = 2.7, p < 0.009). Across all subjects, we observed PIT-related neural blood oxygen level-dependent (BOLD) signal in the right amygdala (t = 3.25, p(SVC) = 0.04, x = 26, y = -6, z = -12), but not in NAcc. The strength of the behavioral PIT effect was positively correlated with polygenic risk for alcohol consumption (r(s) = 0.17, p = 0.032). We conclude that behavioral PIT and polygenic risk for alcohol consumption might be a biomarker for a subclinical phenotype of risky alcohol consumption, even if no drug-related stimulus is present. The association between behavioral PIT effects and the amygdala might point to habitual processes related to out PIT task. In non-dependent young social drinkers, the amygdala rather than the NAcc is activated during PIT; possible different involvement in association with disease trajectory should be investigated in future studies.}, language = {en} } @article{GarbusowSchadSeboldetal.2016, author = {Garbusow, Maria and Schad, Daniel and Sebold, Miriam Hannah and Friedel, Eva and Bernhardt, Nadine and Koch, Stefan P. and Steinacher, Bruno and Kathmann, Norbert and Geurts, Dirk E. M. and Sommer, Christian and Mueller, Dirk K. and Nebe, Stephan and Paul, Soeren and Wittchen, Hans-Ulrich and Zimmermann, Ulrich S. and Walter, Henrik and Smolka, Michael N. and Sterzer, Philipp and Rapp, Michael Armin and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence}, series = {Addiction biology}, volume = {21}, journal = {Addiction biology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1355-6215}, doi = {10.1111/adb.12243}, pages = {719 -- 731}, year = {2016}, abstract = {In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n=31 detoxified patients diagnosed with alcohol dependence and n=24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence.}, language = {en} } @article{SeboldNebeGarbusowetal.2017, author = {Sebold, Miriam Hannah and Nebe, Stephan and Garbusow, Maria and Guggenmos, Matthias and Schad, Daniel and Beck, Anne and Kuitunen-Paul, S{\"o}ren and Sommer, Christian and Frank, Robin and Neu, Peter and Zimmermann, Ulrich S. and Rapp, Michael Armin and Smolka, Michael N. and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {82}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, publisher = {Elsevier}, address = {New York}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2017.04.019}, pages = {847 -- 856}, year = {2017}, abstract = {BACKGROUND: Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. METHODS: Ninety detoxified, medication-free, alcohol-dependent patients and 96 age-and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. RESULTS: Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. CONCLUSIONS: These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies.}, language = {en} }