@article{ChipmanFerrierBrenaetal.2014, author = {Chipman, Ariel D. and Ferrier, David E. K. and Brena, Carlo and Qu, Jiaxin and Hughes, Daniel S. T. and Schroeder, Reinhard and Torres-Oliva, Montserrat and Znassi, Nadia and Jiang, Huaiyang and Almeida, Francisca C. and Alonso, Claudio R. and Apostolou, Zivkos and Aqrawi, Peshtewani and Arthur, Wallace and Barna, Jennifer C. J. and Blankenburg, Kerstin P. and Brites, Daniela and Capella-Gutierrez, Salvador and Coyle, Marcus and Dearden, Peter K. and Du Pasquier, Louis and Duncan, Elizabeth J. and Ebert, Dieter and Eibner, Cornelius and Erikson, Galina and Evans, Peter D. and Extavour, Cassandra G. and Francisco, Liezl and Gabaldon, Toni and Gillis, William J. and Goodwin-Horn, Elizabeth A. and Green, Jack E. and Griffiths-Jones, Sam and Grimmelikhuijzen, Cornelis J. P. and Gubbala, Sai and Guigo, Roderic and Han, Yi and Hauser, Frank and Havlak, Paul and Hayden, Luke and Helbing, Sophie and Holder, Michael and Hui, Jerome H. L. and Hunn, Julia P. and Hunnekuhl, Vera S. and Jackson, LaRonda and Javaid, Mehwish and Jhangiani, Shalini N. and Jiggins, Francis M. and Jones, Tamsin E. and Kaiser, Tobias S. and Kalra, Divya and Kenny, Nathan J. and Korchina, Viktoriya and Kovar, Christie L. and Kraus, F. Bernhard and Lapraz, Francois and Lee, Sandra L. and Lv, Jie and Mandapat, Christigale and Manning, Gerard and Mariotti, Marco and Mata, Robert and Mathew, Tittu and Neumann, Tobias and Newsham, Irene and Ngo, Dinh N. and Ninova, Maria and Okwuonu, Geoffrey and Ongeri, Fiona and Palmer, William J. and Patil, Shobha and Patraquim, Pedro and Pham, Christopher and Pu, Ling-Ling and Putman, Nicholas H. and Rabouille, Catherine and Ramos, Olivia Mendivil and Rhodes, Adelaide C. and Robertson, Helen E. and Robertson, Hugh M. and Ronshaugen, Matthew and Rozas, Julio and Saada, Nehad and Sanchez-Gracia, Alejandro and Scherer, Steven E. and Schurko, Andrew M. and Siggens, Kenneth W. and Simmons, DeNard and Stief, Anna and Stolle, Eckart and Telford, Maximilian J. and Tessmar-Raible, Kristin and Thornton, Rebecca and van der Zee, Maurijn and von Haeseler, Arndt and Williams, James M. and Willis, Judith H. and Wu, Yuanqing and Zou, Xiaoyan and Lawson, Daniel and Muzny, Donna M. and Worley, Kim C. and Gibbs, Richard A. and Akam, Michael and Richards, Stephen}, title = {The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima}, series = {PLoS biology}, volume = {12}, journal = {PLoS biology}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1002005}, pages = {24}, year = {2014}, abstract = {Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.}, language = {en} } @article{KaufmannBaxaChipmanetal.2005, author = {Kaufmann, B. and Baxa, Ulrich and Chipman, P. R. and Rossmann, M. G. and Modrow, Susanne and Seckler, Robert}, title = {Parvovirus B19 does not bind to membrane-associated globoside in vitro}, issn = {0042-6822}, year = {2005}, abstract = {The glycosphingolipid globoside (globotetraosylceramide, Gb4Cer) has been proposed to be the cellular receptor of human parvovirus B19. Quantitative measurements of the binding of parvovirus B19 to Gb4Cer were performed to explore the molecular basis of the virus tropism. Solid-phase assays with fluorescence-labeled liposomes or (125)iodine-labeled empty capsids were used to characterize the specificity of binding. In addition, surface plasmon resonance on lipid layers, as well as isothermal titration microcalorimetry, was utilized for real-time analysis of the virus-receptor interaction. These studies did not confirm binding of Gb4Cer to recombinant B19 VP2 capsids, suggesting that Gb4Cer does not function on its own as the cellular receptor of human parvovirus B19, but might be involved in a more complex recognition event. The biochemical results were further confirmed by cryo-electron microscopy image reconstructions at 10 A resolution, in which the structures of empty capsids were compared with empty capsids incubated with Gb4Cer. (C) 2004 Elsevier Inc. All rights reserved}, language = {en} }