@article{JoussetReinschRybergetal.2018, author = {Jousset, Philippe and Reinsch, Thomas and Ryberg, Trond and Blanck, Hanna and Clarke, Andy and Aghayev, Rufat and Hersir, Gylfi P. and Henninges, Jan and Weber, Michael and Krawczyk, Charlotte M.}, title = {Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04860-y}, pages = {11}, year = {2018}, abstract = {Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW-Iceland. We identify with unprecedented resolution structural features such as normal faults and volcanic dykes in the Reykjanes Oblique Rift, allowing us to infer new dynamic fault processes. Conventional seismometer recordings, acquired simultaneously, validate the spectral amplitude DAS response between 0.1 and 100 Hz bandwidth. We suggest that the networks of fibre-optic telecommunication lines worldwide could be used as seismometers opening a new window for Earth hazard assessment and exploration.}, language = {en} } @misc{JoussetReinschRybergetal.2018, author = {Jousset, Philippe and Reinsch, Thomas and Ryberg, Trond and Blanck, Hanna and Clarke, Andy and Aghayev, Rufat and Hersir, Gylfi P. and Henninges, Jan and Weber, Michael and Krawczyk, Charlotte M.}, title = {Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {691}, doi = {10.25932/publishup-42677}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426770}, pages = {11}, year = {2018}, abstract = {Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW-Iceland. We identify with unprecedented resolution structural features such as normal faults and volcanic dykes in the Reykjanes Oblique Rift, allowing us to infer new dynamic fault processes. Conventional seismometer recordings, acquired simultaneously, validate the spectral amplitude DAS response between 0.1 and 100 Hz bandwidth. We suggest that the networks of fibre-optic telecommunication lines worldwide could be used as seismometers opening a new window for Earth hazard assessment and exploration.}, language = {en} } @misc{PolomAlrshdanAlHalbounietal.2018, author = {Polom, Ulrich and Alrshdan, Hussam and Al-Halbouni, Djamil and Holohan, Eoghan P. and Dahm, Torsten and Sawarieh, Ali and Atallah, Mohamad Y. and Krawczyk, Charlotte M.}, title = {Shear wave reflection seismic yields subsurface dissolution and subrosion patterns}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {979}, issn = {1866-8372}, doi = {10.25932/publishup-45913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459134}, pages = {1079 -- 1098}, year = {2018}, abstract = {Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2-10 m) compacted salt layer formerly suggested to lie at ca. 35-40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings.}, language = {en} } @article{PolomAlrshdanAlHalbounietal.2018, author = {Polom, Ulrich and Alrshdan, Hussam and Al-Halbouni, Djamil and Holohan, Eoghan P. and Dahm, Torsten and Sawarieh, Ali and Atallah, Mohamad Y. and Krawczyk, Charlotte M.}, title = {Shear wave reflection seismic yields subsurface dissolution and subrosion patterns}, series = {Solid earth}, volume = {9}, journal = {Solid earth}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-9-1079-2018}, pages = {1079 -- 1098}, year = {2018}, abstract = {Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (>2-10 m) compacted salt layer formerly suggested to lie at ca. 35-40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings.}, language = {en} } @article{KottmeierAgnonAlHalbounietal.2016, author = {Kottmeier, Christoph and Agnon, Amotz and Al-Halbouni, Djamil and Alpert, Pinhas and Corsmeier, Ulrich and Dahm, Torsten and Eshel, Adam and Geyer, Stefan and Haas, Michael and Holohan, Eoghan and Kalthoff, Norbert and Kishcha, Pavel and Krawczyk, Charlotte and Lati, Joseph and Laronne, Jonathan B. and Lott, Friederike and Mallast, Ulf and Merz, Ralf and Metzger, Jutta and Mohsen, Ayman and Morin, Efrat and Nied, Manuela and Roediger, Tino and Salameh, Elias and Sawarieh, Ali and Shannak, Benbella and Siebert, Christian and Weber, Michael}, title = {New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {544}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2015.12.003}, pages = {1045 -- 1058}, year = {2016}, abstract = {The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, similar to 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @article{FlovenzWangHersiretal.2022, author = {Fl{\´o}venz, {\´O}lafur G. and Wang, Rongjiang and Hersir, Gylfi P{\´a}ll and Dahm, Torsten and Hainzl, Sebastian and Vassileva, Magdalena and Drouin, Vincent and Heimann, Sebastian and Isken, Marius Paul and Gudnason, Egill {\´A}. and {\´A}g{\´u}stsson, Kristj{\´a}n and {\´A}g{\´u}stsd{\´o}ttir, Thorbj{\"o}rg and Hor{\´a}lek, Josef and Motagh, Mahdi and Walter, Thomas R. and Rivalta, Eleonora and Jousset, Philippe and Krawczyk, Charlotte M. and Milkereit, Claus}, title = {Cyclical geothermal unrest as a precursor to Iceland's 2021 Fagradalsfjall eruption}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {5}, publisher = {Nature Research}, address = {Berlin}, issn = {1752-0894}, doi = {10.1038/s41561-022-00930-5}, pages = {397 -- 404}, year = {2022}, abstract = {Understanding and constraining the source of geodetic deformation in volcanic areas is an important component of hazard assessment. Here, we analyse deformation and seismicity for one year before the March 2021 Fagradalsfjall eruption in Iceland. We generate a high-resolution catalogue of 39,500 earthquakes using optical cable recordings and develop a poroelastic model to describe three pre-eruptional uplift and subsidence cycles at the Svartsengi geothermal field, 8 km west of the eruption site. We find the observed deformation is best explained by cyclic intrusions into a permeable aquifer by a fluid injected at 4 km depth below the geothermal field, with a total volume of 0.11 ± 0.05 km3 and a density of 850 ± 350 kg m-3. We therefore suggest that ingression of magmatic CO2 can explain the geodetic, gravity and seismic data, although some contribution of magma cannot be excluded.}, language = {en} }