@article{MartinPuertasLauterbachAllenetal.2019, author = {Martin-Puertas, Celia and Lauterbach, Stefan and Allen, Judy R. M. and Perez, Marta and Blockley, Simon and Wulf, Sabine and Huntley, Brian and Brauer, Achim}, title = {Initial Mediterranean response to major climate reorganization during the last interglacial-glacial transition}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {215}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.05.019}, pages = {232 -- 241}, year = {2019}, abstract = {Millennial-scale Dansgaard Oeschger (DO) variability at northern high latitudes has influenced climatic and environmental conditions in the Mediterranean during the last glacial period. There is evidence that the hemispheric transmission of the DO variability occurred at the end of DO event 25; however, the exact timing and the trigger that activated the environmental response in the Mediterranean remains incompletely understood. Here, we provide evidence that the clear millennial-scale teleconnection between Greenland and the Mediterranean started at similar to 111.4 ka BP and was initiated by a sub-millennial scale cooling in Greenland (GI-25b). High-resolution sediment proxies and the pollen record of Lago Grande di Monticchio (MON), Italy, reflect climatic instability during the last millennium of the last interglacial, which was characterised by a first and short cooling episode (MON 1) at 111.44 +/- 0.69 ka BP, coinciding with the Greenland cold sub-event GI-25b in duration and timing (within dating uncertainties). MON and Greenland (NorthGRIP ice core) also agree in recording a subsequent warm rebound phase that abruptly culminated in the stadial MON 2/GS-25, marking the transition into the last glacial period. Our results show that the GI-25b triggered an early environmental response at MON to centennial-scale climate change in Greenland as a prelude to the millennial-scale teleconnection that was maintained during the glacial period.}, language = {en} } @article{EngelsBrauerBuddelmeijeretal.2016, author = {Engels, Stefan and Brauer, Achim and Buddelmeijer, Nico and Martin-Puertas, Celia and Rach, Oliver and Sachse, Dirk and Van Geel, Bas}, title = {Subdecadal-scale vegetation responses to a previously unknown late-Allerod climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany)}, series = {Journal of quaternary science}, volume = {31}, journal = {Journal of quaternary science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.2900}, pages = {741 -- 752}, year = {2016}, abstract = {Lake Meerfelder Maar (MFM) is the northernmost Western European sediment record with annual laminations across the Younger Dryas (YD), and the onset of the YD in the record of MFM has previously been defined as an increase in non-arboreal pollen abundance at ca. 12 680 varve a BP. Here we present a palynological record at unprecedented subdecadal resolution for MFM, covering the Allerod-YD transition. Our results show a fluctuation in pollen accumulation rates (PARs) before the onset of the YD, with lower rates between ca. 12 725 and 12 685 varve a BP. The fluctuation in PARs occurs simultaneous with a previously undescribed short fluctuation in sediment composition and varve thickness, as well as with changes in biogeochemical proxies. The combined evidence indicates signs of climatic instability ca. 45 years before the onset of the YD. The PAR records of Betula and Pinus furthermore show earlier and more abrupt changes at the onset of the YD than the percentage-records do. Finally, heliophilous herbaceous taxa show a delayed increase following the onset of the YD of ca. 145 years. This paper illustrates the potential to identify previously unrecognized climate variability and vegetation change when using subdecadal-resolution analyses. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} }