@article{HackenbergHakanpaeaeCaietal.2018, author = {Hackenberg, Claudia and Hakanpaeae, Johanna and Cai, Fei and Antonyuk, Svetlana and Eigner, Caroline and Meissner, Sven and Laitaoja, Mikko and Janis, Janne and Kerfeld, Cheryl A. and Dittmann, Elke and Lamzin, Victor S.}, title = {Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {27}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1806668115}, pages = {7141 -- 7146}, year = {2018}, abstract = {Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine beta-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria.}, language = {en} } @article{HeroldBehrendtMeissneretal.2022, author = {Herold, Fabian and Behrendt, Tom and Meißner, Caroline and M{\"u}ller, Notger Germar and Schega, Lutz}, title = {The Influence of acute sprint interval training on cognitive performance of healthy younger adults}, series = {International journal of environmental research and public health : IJERPH / Molecular Diversity Preservation International}, volume = {19}, journal = {International journal of environmental research and public health : IJERPH / Molecular Diversity Preservation International}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph19010613}, pages = {14}, year = {2022}, abstract = {There is considerable evidence showing that an acute bout of physical exercises can improve cognitive performance, but the optimal exercise characteristics (e.g., exercise type and exercise intensity) remain elusive. In this regard, there is a gap in the literature to which extent sprint interval training (SIT) can enhance cognitive performance. Thus, this study aimed to investigate the effect of a time-efficient SIT, termed as "shortened-sprint reduced-exertion high-intensity interval training" (SSREHIT), on cognitive performance. Nineteen healthy adults aged 20-28 years were enrolled and assessed for attentional performance (via the d2 test), working memory performance (via Digit Span Forward/Backward), and peripheral blood lactate concentration immediately before and 10 min after an SSREHIT and a cognitive engagement control condition (i.e., reading). We observed that SSREHIT can enhance specific aspects of attentional performance, as it improved the percent error rate (F\%) in the d-2 test (t (18) = -2.249, p = 0.037, d = -0.516), which constitutes a qualitative measure of precision and thoroughness. However, SSREHIT did not change other measures of attentional or working memory performance. In addition, we observed that the exercise-induced increase in the peripheral blood lactate levels correlated with changes in attentional performance, i.e., the total number of responses (GZ) (r(m) = 0.70, p < 0.001), objective measures of concentration (SKL) (r(m) = 0.73, p < 0.001), and F\% (r(m) = -0.54, p = 0.015). The present study provides initial evidence that a single bout of SSREHIT can improve specific aspects of attentional performance and conforming evidence for a positive link between cognitive improvements and changes in peripheral blood lactate levels.}, language = {en} }