@article{ToySutherlandTownendetal.2017, author = {Toy, Virginia Gail and Sutherland, Rupert and Townend, John and Allen, Michael J. and Becroft, Leeza and Boles, Austin and Boulton, Carolyn and Carpenter, Brett and Cooper, Alan and Cox, Simon C. and Daube, Christopher and Faulkner, D. R. and Halfpenny, Angela and Kato, Naoki and Keys, Stephen and Kirilova, Martina and Kometani, Yusuke and Little, Timothy and Mariani, Elisabetta and Melosh, Benjamin and Menzies, Catriona D. and Morales, Luiz and Morgan, Chance and Mori, Hiroshi and Niemeijer, Andre and Norris, Richard and Prior, David and Sauer, Katrina and Schleicher, Anja Maria and Shigematsu, Norio and Teagle, Damon A. H. and Tobin, Harold and Valdez, Robert and Williams, Jack and Yeo, Samantha and Baratin, Laura-May and Barth, Nicolas and Benson, Adrian and Boese, Carolin and C{\´e}l{\´e}rier, Bernard and Chamberlain, Calum J. and Conze, Ronald and Coussens, Jamie and Craw, Lisa and Doan, Mai-Linh and Eccles, Jennifer and Grieve, Jason and Grochowski, Julia and Gulley, Anton and Howarth, Jamie and Jacobs, Katrina and Janku-Capova, Lucie and Jeppson, Tamara and Langridge, Robert and Mallyon, Deirdre and Marx, Ray and Massiot, C{\´e}cile and Mathewson, Loren and Moore, Josephine and Nishikawa, Osamu and Pooley, Brent and Pyne, Alex and Savage, Martha K. and Schmitt, Doug and Taylor-Offord, Sam and Upton, Phaedra and Weaver, Konrad C. and Wiersberg, Thomas and Zimmer, Martin}, title = {Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand}, series = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, volume = {60}, journal = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, organization = {DFDP-2 Sci Team}, issn = {0028-8306}, doi = {10.1080/00288306.2017.1375533}, pages = {497 -- 518}, year = {2017}, abstract = {During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.}, language = {en} } @phdthesis{Marx2024, author = {Marx, Carolin Valerie}, title = {Escalation of commitment in information systems projects: a cognitive-affective perspective}, doi = {10.25932/publishup-62696}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626969}, school = {Universit{\"a}t Potsdam}, pages = {174}, year = {2024}, abstract = {While information systems (IS) projects are pivotal in guiding organizational strategies and sustaining competitive advantages, they frequently overrun budgets, extend beyond timelines, and experience high failure rates. This dissertation delves into the psychological micro-foundations of human behavior - specifically cognition and emotion - in relation to a prevalent issue in IS project management: the tendency to persist with failing courses of action, also called escalation of commitment (EoC). Through a mixed-methods research approach, this study investigates the emotional and cognitive bases of decision-making during IS project escalation and its evolution over time. The results of a psychophysiological laboratory experiment provide evidence for the predictions on the role of negative and complex situational integral emotions of Cognitive Dissonance over Coping Theory and add to a better understanding of how escalation tendencies change during sequential decision-making due to cognitive learning effects. Using psychophysiological measures, including data triangulation between electrodermal and cardiovascular activity and AI-based analysis of facial micro-expressions, this research reveals physiological markers of behavioral escalation tendencies. Complementing the experiment, a qualitative analysis using free-form narration during decision-making simulations shows that decision-makers employ varied cognitive reasoning patterns to justify escalating behaviors, suggesting a sequence of four distinct cognitive phases. By integrating both qualitative and quantitative findings, this dissertation offers a comprehensive theoretical framework of how cognition and emotion shape behavioral EoC over time. I propose that escalation is a cyclical adaptation of mental models, distinguished by shifts in cognitive reasoning patterns, temporal cognition mode variations, and interactions with situational emotions and their anticipation. The primary contribution of this dissertation lies in disentangling the emotional and cognitive mechanisms that drive IS project escalation. The findings provide the basis for developing de-escalation strategies, thereby helping to improve decision-making under uncertainty. Stakeholders involved in IS projects that get "off track" should be aware of the tendency to persist with failing courses of action and the importance of the underlying emotional and cognitive dynamics.}, language = {de} } @article{dePaulaMarxWolfetal.2022, author = {de Paula, Danielly and Marx, Carolin and Wolf, Ella and Dremel, Christian and Cormican, Kathryn and Uebernickel, Falk}, title = {A managerial mental model to drive innovation in the context of digital transformation}, series = {Industry and innovation}, journal = {Industry and innovation}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1366-2716}, doi = {10.1080/13662716.2022.2072711}, pages = {24}, year = {2022}, abstract = {Industry 4.0 is transforming how businesses innovate and, as a result, companies are spearheading the movement towards 'Digital Transformation'. While some scholars advocate the use of design thinking to identify new innovative behaviours, cognition experts emphasise the importance of top managers in supporting employees to develop these behaviours. However, there is a dearth of research in this domain and companies are struggling to implement the required behaviours. To address this gap, this study aims to identify and prioritise behavioural strategies conducive to design thinking to inform the creation of a managerial mental model. We identify 20 behavioural strategies from 45 interviewees with practitioners and educators and combine them with the concepts of 'paradigm-mindset-mental model' from cognition theory. The paper contributes to the body of knowledge by identifying and prioritising specific behavioural strategies to form a novel set of survival conditions aligned to the new industrial paradigm of Industry 4.0.}, language = {en} }