@article{CandanKoralayAkaletal.2011, author = {Candan, Osman and Koralay, O. E. and Akal, Cemal B. and Kaya, O. and Oberh{\"a}nsli, Roland and Dora, O. O. and Konak, N. and Chen, F.}, title = {Supra-Pan-African unconformity between core and cover series of the Menderes Massif/Turkey and its geological implications}, series = {Precambrian research}, volume = {184}, journal = {Precambrian research}, number = {1-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2010.09.010}, pages = {1 -- 23}, year = {2011}, abstract = {Well-preserved primary contact relationships between a Late Proterozoic metasedimentary and the metagranitic core and Palaeozoic cover series of the Menderes Massif have been recognized in the eastern part of the Cine submassif on a regional-scale. Metaconglomerates occur as laterally discontinuous channel-fill bodies close the base of the metaquartzarenite directly above the basement. The pebbles in the metaconglomerates consist mainly of different types of tourmaline-rich leucocratic granitoids, tourmalinite and schist in a sandy matrix. Petrographic features, geochemical compositions and zircon radiometric ages (549.6 +/- 3.7-552.3 +/- 3.1 Ma) of the diagnostic clasts of the metaconglomerates (e.g. leucocratic granitoids and tourmalinites) show excellent agreement with their in situ equivalents (549.0 +/- 5.4 Ma) occurring in the Pan-African basement as stocks and veins. The correlation between clasts in the metaconglomerates and granitoids of the basement suggests that the primary contact between the basement and cover series is a regional unconformity (supra-Pan-African Unconformity) representing deep erosion of the Pan-African basement followed by the deposition of the cover series. Hence the usage of 'core-cover' terminology in the Menderes Massif is valid. Consequently, these new data preclude the views that the granitic precursors of the leucocratic orthogneisses are Tertiary intrusions.}, language = {en} } @article{KoralayCandanChenetal.2012, author = {Koralay, O. E. and Candan, Osman and Chen, F. and Akal, Cemal B. and Oberh{\"a}nsli, Roland and Satir, M. and Dora, O. O.}, title = {Pan-African magmatism in the Menderes Massif - geochronological data from leucocratic tourmaline orthogneisses in western Turkey}, series = {International journal of earth sciences}, volume = {101}, journal = {International journal of earth sciences}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-012-0775-2}, pages = {2055 -- 2081}, year = {2012}, abstract = {The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550 Ma (latest Neoproterozoic). The North Africa-Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550-540 Ma (latest Neoproterozoic-earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550 Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif.}, language = {en} } @article{CandanDoraOberhaenslietal.1997, author = {Candan, O. and Dora, O. and Oberh{\"a}nsli, Roland and {\"O}lsner, F. and D{\"u}rr, S.}, title = {Blueschist relics in the Mesozoic cover series of the Menderes Massif and correlations with Samos Island, Cyclades}, year = {1997}, language = {en} } @article{OberhaensliCandanDoraetal.1997, author = {Oberh{\"a}nsli, Roland and Candan, O. and Dora, O. and D{\"u}rr, S.}, title = {Eclogites within the Menderes Massif / western Turkey}, year = {1997}, language = {en} } @article{CandanAkalKoralayetal.2016, author = {Candan, O. and Akal, C. and Koralay, O. E. and Okay, A. I. and Oberh{\"a}nsli, Roland and Prelevic, D. and Mertz-Kraus, R.}, title = {Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey - Evidence for southward subduction of Paleotethys}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {683}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.06.030}, pages = {349 -- 366}, year = {2016}, abstract = {Carboniferous metagranites with U-Pb zircon crystallization ages of 331-315 Ma crop out in the Afyon zone in the northern margin of the Anatolide-Tauride Block, which is commonly regarded as part of Gondwana during the Late Palaeozoic. They are peraluminous, calc-alkaline and are characterized by increase in Rb and Ba, decrease in Nb-Ta, and enrichment in Sr and high LILE/HFSE ratios compatible with a continental arc setting. The metagranites intrude a metasedimentary sequence of phyllite, metaquartzite and marble; both the Carboniferous metagranites and metasedimentary rocks are overlain unconformably by Lower Triassic metaconglomerates, metavolcanics and Upper Triassic to Cretaceous recrystallized limestones. The low-grade metamorphism and deformation occurred at the Cretaceous-Tertiary boundary. There is no evidence for Carboniferous deformation and metamorphism in the region. Carboniferous arc-type granites and previously described Carboniferous subduction-accretion complexes on the northern margin of the Anatolide-Tauride Block suggest southward subduction of Paleotethys under Gondwana during the Carboniferous. Considering the Variscan-related arc granites in Pelagonian and Sakarya zones on the active southern margin of Laurasia, a dual subduction of Paleotethys can be envisaged between Early Carboniferous and Late Permian. However, the southward subduction was short-lived and by the Late Permian the Gondwana margin became passive. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{CandanKoralayTopuzetal.2016, author = {Candan, O. and Koralay, O. E. and Topuz, G. and Oberh{\"a}nsli, Roland and Fritz, H. and Collins, A. S. and Chen, F.}, title = {Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {34}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2015.02.015}, pages = {158 -- 173}, year = {2016}, abstract = {Numerous (meta-)gabbroic dikes or stocks occur within the latest Neoproterozoic-early Cambrian series of the Menderes Massif (Anatolide-Tauride Block, western Turkey). These well-preserved rocks were locally converted into eclogitic metagabbros and garnet amphibolites along the contacts or shear zones. Both bulk-rock composition and compositions of igneous clinopyroxenes suggest continental tholeiitic affinity. U-Pb dating of igneous zircons from gabbroic rocks yielded a mean age of 563 +/- 1 Ma (2 sigma), indicating emplacement during the latest Neoproterozoic (Ediacaran). On the other hand, rims of zircons from eclogitic metagabbro gave 535 +/- 3 Ma (2 sigma) (early Cambrian), in addition to 558 +/- 3 Ma (2 sigma) obtained from the igneous core of zircons. These ages are interpreted as the time of high-P metamorphism and crystallization age of gabbroic protolith, respectively. Given the estimated paleogeographic position of the Anatolide-Tauride Block during the late Neoproterozoic and early Cambrian, this orogenic event can be spatially and temporally related to the northward continuity of 600-500 Ma orogenic event (Malagasy/Kuunga orogeny) extending from western margin of India, Madagascar, via Arabia up to northern margin of Gondwana beneath thick Phanerozoic cover series in Arabian Peninsula. Therefore, the high-P evolution of the basement of the Menderes Massif and associated basic intrusions can be interpreted to mark the latest stages of consumption of the basin/oceanic branches and final amalgamation of the Gondwana during the late Neoproterozoic-early Cambrian around the Arabian region. (C) 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{CandanDoraOberhaenslietal.2000, author = {Candan, O. and Dora, O. and Oberh{\"a}nsli, Roland and Cetinkaplan, Mete and Partzsch, Julius and Warkus, Friederike C. and D{\"u}rr, S.}, title = {Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes massif, Western Anatolia, Turkey}, year = {2000}, language = {en} } @article{CandanCetinkaplanOberhaenslietal.2005, author = {Candan, O. and Cetinkaplan, Mete and Oberh{\"a}nsli, Roland and Rimmele, Gaetan and Akal, Cemal B.}, title = {Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey}, issn = {0024-4937}, year = {2005}, abstract = {Carpholite+chloritoid+pyrophyllite association occurs widely in the Triassic metaclastic rocks of the Afyon Zone in west-central Turkey. Fe-Mg-carpholite is associated with rare aragonite pseudomorphs and glaucophane in marbles and metabasites, respectively. The Afyon Zone consists stratigraphically of a Pan-African basement and an overlying Mesozoic cover sequence. The Pan-African basement, which shows Barrovian-type amphibolite-facies metamorphism, comprises garnet-mica schists, intruded by sodic amphibole-bearing metagabbros and leucocratic metagranites. It is unconformably overlain by a continuous metasedimentary sequence extending from Triassic to early Palaeocene. This cover sequence begins with metaconglomerates, which pass upwards into phyllites. Fe-Mg-carpholite occurs within this metaclastic sequence as rosette-like crystals in metapelites and fibres in quartz segregations. The metaclastic rocks are succeeded by metamorphosed platform carbonates, grading into Latest Mesozoic metamorphosed pelagic limestones, which in turn progress up to a Late Mesozoic-Early Tertiary olistostrome. This sequence is tectonically overlain by the blueschists of the Tavsanh Zone. Fe-Mg-carpholite-bearing assemblages imply temperatures of about 350 degrees C and minimum pressures of 6-9 kbar, corresponding to burial depths of about 30 km for the Mesozoic passive continental margin sediments and the underlying Pan-African supracrustal metasediments and metaintrusives. The metamorphic rocks of the Afyon Zone are unconformably overlain by Upper Palaeocene-Lower Eocene sedimentary rocks, indicating a Paleocene age for the regional HP/LT metamorphism. This implies continuous younging of HP/LT metamorphism in the Anatolides related to northward subduction of the Anatolide-Tauride platform beneath the Sakarya Zone. From north to south this involved the Tavsanh Zone (Campanian, 80 +/- 5 Ma), the Afyon Zone (Palaeocene?), the Menderes Massif (Middle Eocene) and the Lycian Nappes (Late Cretaceous-Eocene?), all of which were probably derived from the frontal part of the Anatolide-Tauride platform. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{RimmeleParraGoffeetal.2005, author = {Rimmele, Gaetan and Parra, T. and Goffe, B. and Oberh{\"a}nsli, Roland and Jolivet, L. and Candan, O.}, title = {Exhumation paths of high-pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey) : a multi-equilibrium approach}, issn = {0022-3530}, year = {2005}, abstract = {The Menderes Massif and the overlying Lycian Nappes occupy an extensive area of SW Turkey where high-pressure- low-temperature metamorphic rocks occur. Precise retrograde P-T paths reflecting the tectonic mechanisms responsible for the exhumation of these high-pressure-low-temperature rocks can be constrained with multi-equilibrium P-T estimates relying on local equilibria. Whereas a simple isothermal decompression is documented for the exhumation of high-pressure parageneses from the southern Menderes Massif, various P-T paths are observed in the overlying Karaova Formation of the Lycian Nappes. In the uppermost levels of this unit, far from the contact with the Menderes Massif, all P-T estimates depict cooling decompression paths. These high-pressure cooling paths are associated with top-to-the-NNE movements related to the Akcakaya shear zone, located at the top of the Karaova Formation. This zone of strain localization is a local intra-nappe contact that was active in the early stages of exhumation of the high-pressure rocks. In contrast, at the base of the Karaova Formation, along the contact with the Menderes Massif, P-T calculations show decompressional heating exhumation paths. These paths are associated with severe deformation characterized by top-to-the-east shearing related to a major shear zone (the Gerit shear zone) that reflects late exhumation of high-pressure parageneses under warmer conditions}, language = {en} } @article{JolivetRimmeleOberhaenslietal.2004, author = {Jolivet, L. and Rimmele, Gaetan and Oberh{\"a}nsli, Roland and Goffe, B. and Candan, O.}, title = {Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif : Geodynamic implications}, issn = {0037-9409}, year = {2004}, abstract = {The recent discovery of HP-LT parageneses in the basal unit of the Lycian nappes and in the Mesozoic cover of the Menderes massif leads us to reconsider and discuss the correlation of this region with the nearby collapsed Hellenides in the Aegean domain. Although similarities have long been pointed Out by various authors, a clear correlation has not yet been proposed and most authors insist more on differences than similarities. The Menderes massif is the eastern extension of the Aegean region but it has been less severely affected by the Aegean extension during the Oligo-Miocene. It would thus be useful to use the structure of the Menderes massif as an image of the Aegean region before a significant extension has considerably reduced its crustal thickness. But the lack of correlation between the two regions has so far hampered Such comparisons. We describe the main tectonic units and metamorphic events in the two regions and propose a correlation. We then show possible sections of the two regions before the Aegean extension and discuss the involvement of continental basement in the Hellenic accretionary complex. In our interpretation the Hellenic- Tauric accretionary complex was composed of stacked basement and cover units which underwent variable P-T histories. Those which were not exhumed early enough later followed a high-T evolution which led to partial melting in the Cyclades during post-orogenic extension. Although the Menderes massif contains a larger volume of basement units it does not show significant evidence for the Oligo-Miocene migmatites observed in the center of the Cyclades suggesting that crustal partial melting is strictly related to post-orogenic extension in this case}, language = {en} }