@misc{ChristakoudiTsilidisMulleretal.2020, author = {Christakoudi, Sofa and Tsilidis, Konstantinos K. and Muller, David C. and Freisling, Heinz and Weiderpass, Elisabete and Overvad, Kim and S{\"o}derberg, Stefan and H{\"a}ggstr{\"o}m, Christel and Pischon, Tobias and Dahm, Christina C. and Zhang, Jie and Tj{\o}nneland, Anne and Schulze, Matthias Bernd}, title = {A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-52582}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525827}, pages = {17}, year = {2020}, abstract = {Abdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI<18.5 kg/m(2)) or obese (BMI30 kg/m(2)) categories, while the highest quartile of ABSI separated 18-39\% of the individuals within each BMI category, which had 22-55\% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring.}, language = {en} } @article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{HuangPengRudayaetal.2018, author = {Huang, Xiaozhong and Peng, Wei and Rudaya, Natalia and Grimm, Eric C. and Chen, Xuemei and Cao, Xianyong and Zhang, Jun and Pan, Xiaoduo and Liu, Sisi and Chen, Chunzhu and Chen, Fahu}, title = {Holocene vegetation and climate dynamics in the Altai Mountains and Surrounding Areas}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078028}, pages = {6628 -- 6636}, year = {2018}, abstract = {A comprehensive understanding of the regional vegetation responses to long-term climate change will help to forecast Earth system dynamics. Based on a new well-dated pollen data set from Kanas Lake and a review on the published pollen records in and around the Altai Mountains, the regional vegetation dynamics and forcing mechanisms are discussed. In the Altai Mountains, the forest optimum occurred during 10-7ka for the upper forest zone and the tree line decline and/or ecological shifts were caused by climatic cooling from around 7ka. In the lower forest zone, the forest reached an optimum in the middle Holocene, and then increased openness of the forest, possibly caused by both climate cooling and human activities, took place in the late Holocene. In the lower basins or plains around the Altai Mountains, the development of protograssland or forest benefited from increasing humidity in the middle to late Holocene. Plain Language Summary In the Altai Mountains and surrounding area of central Asia, the previous studies of the Holocene paleovegetation and paleoclimate studies did not discuss the different ecological limiting factors for the vegetation in high mountains and low-elevation areas due to limited data. With accumulating fossil pollen data and surface pollen data, it is possible to understand better the geomorphological effect on the vegetation and discrepancies of vegetation/forest responses to large-scale climate forcing, and it is also possible to get reliable quantitative reconstructions of climate. Here our new pollen data and review on the published fossil pollen data will help us to look into the past climate change and vertical evolution of vegetation in this important area of the Northern Hemisphere. Based on our study, it can be concluded that the growth of taiga forest in the wetter areas may be promoted under a future warmer climate, while the forest in the relatively dry areas is liable to decline, and the different vegetation dynamics will contribute to future high-resolution coupled vegetation-climate model for Earth system modelling.}, language = {en} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{MuellerFoerstendorfSteudtneretal.2019, author = {M{\"u}ller, Katharina and Foerstendorf, Harald and Steudtner, Robin and Tsushima, Satoru and Kumke, Michael Uwe and Lef{\`e}vre, Gr{\´e}gory and Rothe, J{\"o}rg and Mason, Harris and Szab{\´o}, Zolt{\´a}n and Yang, Ping and Adam, Christian K. R. and Andr{\´e}, R{\´e}mi and Brennenstuhl, Katlen and Chiorescu, Ion and Cho, Herman M. and Creff, Ga{\"e}lle and Coppin, Fr{\´e}d{\´e}ric and Dardenne, Kathy and Den Auwer, Christophe and Drobot, Bj{\"o}rn and Eidner, Sascha and Hess, Nancy J. and Kaden, Peter and Kremleva, Alena and Kretzschmar, Jerome and Kr{\"u}ger, Sven and Platts, James A. and Panak, Petra and Polly, Robert and Powell, Brian A. and Rabung, Thomas and Redon, Roland and Reiller, Pascal E. and R{\"o}sch, Notker and Rossberg, Andr{\´e} and Scheinost, Andreas C. and Schimmelpfennig, Bernd and Schreckenbach, Georg and Skerencak-Frech, Andrej and Sladkov, Vladimir and Solari, Pier Lorenzo and Wang, Zheming and Washton, Nancy M. and Zhang, Xiaobin}, title = {Interdisciplinary Round-Robin Test on molecular spectroscopy of the U(VI) Acetate System}, series = {ACS omega / American Chemical Society}, volume = {4}, journal = {ACS omega / American Chemical Society}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.9b00164}, pages = {8167 -- 8177}, year = {2019}, abstract = {A comprehensive molecular analysis of a simple aqueous complexing system. U(VI) acetate. selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry.}, language = {en} } @article{ZhangRudolphBenitezetal.2019, author = {Zhang, Quanchao and Rudolph, Tobias and Benitez, Alejandro J. and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes}, series = {Smart materials and structures}, volume = {28}, journal = {Smart materials and structures}, number = {5}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/1361-665X/ab10a1}, pages = {10}, year = {2019}, abstract = {Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300\% and 100\% reversible strain changes of εʹrev = 22\% ± 1\% and 6\% ± 1\% were measured, with switching temperature ranges of 10 °C-30 °C and 45 °C-60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11\% ± 3\% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality.}, language = {en} } @article{ZhangSpitzAntoniettietal.2005, author = {Zhang, T. and Spitz, Christian and Antonietti, Markus and Faul, C. F.}, title = {Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly}, year = {2005}, abstract = {Facile organization of the inorganic sandwiched heteropolytungstomolybdate K-13[Eu(SiW9Mo2O39)(2)] (E) into highly ordered supramolecular nanostructured materials by complexation with a series of cationic surfactants is achieved by the ionic self-assembly (ISA) route. The structure and phase behavior of the complexes were examined by IR spectroscopy, differential scanning calorimetry, optical microscopy, and small- and wide-angle X-ray scattering. This class of materials shows a number of interesting physicochemical properties, namely liquid-crystalline phases (both thermotropic and lyotropic) and strong photoluminescence. The photophysical behavior (fluorescence spectra, fluorescence lifetimes, fluorescence quantum yield) of the complexes differs widely in solid powders, films, and solutions. The amphiphilic cationic surfactants not only play a structural role but also have a strong influence on the photophysical properties of E. The photophysical behavior of E can in this way be easily modified by its organizational motifs}, language = {en} } @article{ChengvandenBerghZengetal.2013, author = {Cheng, Shifeng and van den Bergh, Erik and Zeng, Peng and Zhong, Xiao and Xu, Jiajia and Liu, Xin and Hofberger, Johannes and de Bruijn, Suzanne and Bhide, Amey S. and Kuelahoglu, Canan and Bian, Chao and Chen, Jing and Fan, Guangyi and Kaufmann, Kerstin and Hall, Jocelyn C. and Becker, Annette and Br{\"a}utigam, Andrea and Weber, Andreas P. M. and Shi, Chengcheng and Zheng, Zhijun and Li, Wujiao and Lv, Mingju and Tao, Yimin and Wang, Junyi and Zou, Hongfeng and Quan, Zhiwu and Hibberd, Julian M. and Zhang, Gengyun and Zhu, Xin-Guang and Xu, Xun and Schranz, M. Eric}, title = {The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {8}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.113.113480}, pages = {2813 -- 2830}, year = {2013}, abstract = {The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.}, language = {en} } @article{HorikoshiYaghootkarMookKanamorietal.2013, author = {Horikoshi, Momoko and Yaghootkar, Hanieh and Mook-Kanamori, Dennis O. and Sovio, Ulla and Taal, H. Rob and Hennig, Branwen J. and Bradfield, Jonathan P. and St Pourcain, Beate and Evans, David M. and Charoen, Pimphen and Kaakinen, Marika and Cousminer, Diana L. and Lehtimaki, Terho and Kreiner-Moller, Eskil and Warrington, Nicole M. and Bustamante, Mariona and Feenstra, Bjarke and Berry, Diane J. and Thiering, Elisabeth and Pfab, Thiemo and Barton, Sheila J. and Shields, Beverley M. and Kerkhof, Marjan and van Leeuwen, Elisabeth M. and Fulford, Anthony J. and Kutalik, Zoltan and Zhao, Jing Hua and den Hoed, Marcel and Mahajan, Anubha and Lindi, Virpi and Goh, Liang-Kee and Hottenga, Jouke-Jan and Wu, Ying and Raitakari, Olli T. and Harder, Marie N. and Meirhaeghe, Aline and Ntalla, Ioanna and Salem, Rany M. and Jameson, Karen A. and Zhou, Kaixin and Monies, Dorota M. and Lagou, Vasiliki and Kirin, Mirna and Heikkinen, Jani and Adair, Linda S. and Alkuraya, Fowzan S. and Al-Odaib, Ali and Amouyel, Philippe and Andersson, Ehm Astrid and Bennett, Amanda J. and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Dallongeville, Jean and Das, Shikta and de Geus, Eco J. C. and Estivill, Xavier and Flexeder, Claudia and Froguel, Philippe and Geller, Frank and Godfrey, Keith M. and Gottrand, Frederic and Groves, Christopher J. and Hansen, Torben and Hirschhorn, Joel N. and Hofman, Albert and Hollegaard, Mads V. and Hougaard, David M. and Hyppoenen, Elina and Inskip, Hazel M. and Isaacs, Aaron and Jorgensen, Torben and Kanaka-Gantenbein, Christina and Kemp, John P. and Kiess, Wieland and Kilpelainen, Tuomas O. and Klopp, Norman and Knight, Bridget A. and Kuzawa, Christopher W. and McMahon, George and Newnham, John P. and Niinikoski, Harri and Oostra, Ben A. and Pedersen, Louise and Postma, Dirkje S. and Ring, Susan M. and Rivadeneira, Fernando and Robertson, Neil R. and Sebert, Sylvain and Simell, Olli and Slowinski, Torsten and Tiesler, Carla M. T. and Toenjes, Anke and Vaag, Allan and Viikari, Jorma S. and Vink, Jacqueline M. and Vissing, Nadja Hawwa and Wareham, Nicholas J. and Willemsen, Gonneke and Witte, Daniel R. and Zhang, Haitao and Zhao, Jianhua and Wilson, James F. and Stumvoll, Michael and Prentice, Andrew M. and Meyer, Brian F. and Pearson, Ewan R. and Boreham, Colin A. G. and Cooper, Cyrus and Gillman, Matthew W. and Dedoussis, George V. and Moreno, Luis A. and Pedersen, Oluf and Saarinen, Maiju and Mohlke, Karen L. and Boomsma, Dorret I. and Saw, Seang-Mei and Lakka, Timo A. and Koerner, Antje and Loos, Ruth J. F. and Ong, Ken K. and Vollenweider, Peter and van Duijn, Cornelia M. and Koppelman, Gerard H. and Hattersley, Andrew T. and Holloway, John W. and Hocher, Berthold and Heinrich, Joachim and Power, Chris and Melbye, Mads and Guxens, Monica and Pennell, Craig E. and Bonnelykke, Klaus and Bisgaard, Hans and Eriksson, Johan G. and Widen, Elisabeth and Hakonarson, Hakon and Uitterlinden, Andre G. and Pouta, Anneli and Lawlor, Debbie A. and Smith, George Davey and Frayling, Timothy M. and McCarthy, Mark I. and Grant, Struan F. A. and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Timpson, Nicholas J. and Prokopenko, Inga and Freathy, Rachel M.}, title = {New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism}, series = {Nature genetics}, volume = {45}, journal = {Nature genetics}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, organization = {MAGIC, Early Growth Genetics EGG}, issn = {1061-4036}, doi = {10.1038/ng.2477}, pages = {76 -- U115}, year = {2013}, abstract = {Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood(1). Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits(2). In an expanded genome-wide association metaanalysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.}, language = {en} } @article{KunnusJosefssonRajkovicetal.2016, author = {Kunnus, Kristjan and Josefsson, I. and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Beye, Martin and Weniger, C. and Gruebel, S. and Scholz, M. and Nordlund, D. and Zhang, W. and Hartsock, R. W. and Gaffney, K. J. and Schlotter, W. F. and Turner, J. J. and Kennedy, B. and Hennies, F. and de Groot, F. M. F. and Techert, S. and Odelius, Michael and Wernet, Ph. and F{\"o}hlisch, Alexander}, title = {Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)(5) to Fe(CO)(4)EtOH}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Washington}, issn = {2329-7778}, doi = {10.1063/1.4941602}, pages = {16}, year = {2016}, abstract = {We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)(5) in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)(4) which are observed following a charge transfer photoexcitation of Fe(CO)(5) as reported in our previous study [ Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A(1) state of Fe(CO)(4). A sub-picosecond time constant of the spin crossover from B-1(2) to B-3(2) is rationalized by the proposed B-1(2) -> (1)A(1) -> B-3(2) mechanism. Ultrafast ligation of the B-1(2) Fe(CO)(4) state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the B-3(2) Fe(CO)(4) ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via B-1(2) -> (1)A(1) -> (1)A'Fe(CO)(4)EtOH pathway and the time scale of the (1)A(1) Fe(CO)(4) state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution. (C) 2016 Author(s).}, language = {en} } @article{GereckeEdlichGiulbudagianetal.2017, author = {Gerecke, Christian and Edlich, Alexander and Giulbudagian, Michael and Schumacher, Fabian and Zhang, Nan and Said, Andre and Yealland, Guy and Lohan, Silke B. and Neumann, Falko and Meinke, Martina C. and Ma, Nan and Calderon, Marcelo and Hedtrich, Sarah and Schaefer-Korting, Monika and Kleuser, Burkhard}, title = {Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes}, series = {Nanotoxicology}, volume = {11}, journal = {Nanotoxicology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1743-5390}, doi = {10.1080/17435390.2017.1292371}, pages = {267 -- 277}, year = {2017}, abstract = {Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.}, language = {en} } @misc{GereckeEdlichGiulbudagianetal.2017, author = {Gerecke, Christian and Edlich, Alexander and Giulbudagian, Michael and Schumacher, Fabian and Zhang, Nan and Said, Andre and Yealland, Guy and Lohan, Silke B. and Neumann, Falko and Meinke, Martina C. and Ma, Nan and Calder{\´o}n, Marcelo and Hedtrich, Sarah and Sch{\"a}fer-Korting, Monika and Kleuser, Burkhard}, title = {Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395325}, pages = {11}, year = {2017}, abstract = {Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.}, language = {en} } @article{JayNorellEckertetal.2018, author = {Jay, Raphael M. and Norell, Jesper and Eckert, Sebastian and Hantschmann, Markus and Beye, Martin and Kennedy, Brian and Quevedo, Wilson and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and Hoffmann, Matthias C. and Mitra, Ankush and Moeller, Stefan P. and Nordlund, Dennis and Zhang, Wenkai and Liang, Huiyang W. and Kunnus, Kristian and Kubicek, Katharina and Techert, Simone A. and Lundberg, Marcus and Wernet, Philippe and Gaffney, Kelly and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b01429}, pages = {3538 -- 3543}, year = {2018}, abstract = {Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.}, language = {en} } @article{HeslopWinkelAnthonyetal.2019, author = {Heslop, J. K. and Winkel, Matthias and Anthony, K. M. Walter and Spencer, R. G. M. and Podgorski, D. C. and Zito, P. and Kholodov, A. and Zhang, M. and Liebner, Susanne}, title = {Increasing organic carbon biolability with depth in yedoma permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {124}, journal = {Journal of geophysical research : Biogeosciences}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2018JG004712}, pages = {2021 -- 2038}, year = {2019}, abstract = {Permafrost thaw subjects previously frozen organic carbon (OC) to microbial decomposition, generating the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) and fueling a positive climate feedback. Over one quarter of permafrost OC is stored in deep, ice-rich Pleistocene-aged yedoma permafrost deposits. We used a combination of anaerobic incubations, microbial sequencing, and ultrahigh-resolution mass spectrometry to show yedoma OC biolability increases with depth along a 12-m yedoma profile. In incubations at 3 degrees C and 13 degrees C, GHG production per unit OC at 12-versus 1.3-m depth was 4.6 and 20.5 times greater, respectively. Bacterial diversity decreased with depth and we detected methanogens at all our sampled depths, suggesting that in situ microbial communities are equipped to metabolize thawed OC into CH4. We concurrently observed an increase in the relative abundance of reduced, saturated OC compounds, which corresponded to high proportions of C mineralization and positively correlated with anaerobic GHG production potentials and higher proportions of OC being mineralized as CH4. Taking into account the higher global warming potential (GWP) of CH4 compared to CO2, thawed yedoma sediments in our study had 2 times higher GWP at 12-versus 9.0-m depth at 3 degrees C and 15 times higher GWP at 13 degrees C. Considering that yedoma is vulnerable to processes that thaw deep OC, our findings imply that it is important to account for this increasing GHG production and GWP with depth to better understand the disproportionate impact of yedoma on the magnitude of the permafrost carbon feedback.}, language = {en} } @misc{FanScaringiKorupetal.2019, author = {Fan, Xuanmei and Scaringi, Gianvito and Korup, Oliver and West, A. Joshua and van Westen, Cees J. and Tanyas, Hakan and Hovius, Niels and Hales, Tristram C. and Jibson, Randall W. and Allstadt, Kate E. and Zhang, Limin and Evans, Stephen G. and Xu, Chong and Li, Gen and Pei, Xiangjun and Xu, Qiang and Huang, Runqiu}, title = {Earthquake-Induced Chains of Geologic Hazards}, series = {Reviews of geophysics}, volume = {57}, journal = {Reviews of geophysics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {8755-1209}, doi = {10.1029/2018RG000626}, pages = {421 -- 503}, year = {2019}, abstract = {Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate- and large-magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake-induced landslides and their consequences: the magnitude M 7.6 Chi-Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.}, language = {en} } @article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} } @article{QuZhangGrimsdaleetal.2004, author = {Qu, J. Q. and Zhang, J. Y. and Grimsdale, A. C. and Mullen, K. and Jaiser, Frank and Yang, X. H. and Neher, Dieter}, title = {Dendronized perylene diimide emitters : Synthesis, luminescence, and electron and energy transfer studies}, issn = {0024-9297}, year = {2004}, abstract = {Aggregation of chromophores in the solid state commonly causes undesirable red shifts in the emission spectra and/or emission quenching. To overcome this problem, we have prepared soluble perylenetetracarboxidiimide dyes in which the chromophores are effectively shielded by polyphenylene dendrimers attached in the bay positions. Models show that attachment of the shielding units in the bay position should provide more efficient shielding than attaching them via the imide moieties. The dendrimers possess excellent film-forming properties due to alkyl substituents on their peripheries. The lack of a red shift in emission upon going from solution to the solid state indicates the dendrons suppress interaction of the emissive cores, leading to pure red-orange emission. Single-layer LEDs produce red-orange emission with relatively low efficiency especially for the higher generation dendrons, which is attributed to poor charge conduction. LEDs using blends of the dendrimers and the undendronized dye as a model compound in PVK have been investigated, and a model to extract relative charge injection rates through the dendritic scaffold from the spectral contributions in the EL spectra is developed}, language = {en} } @article{WangHerzschuhShumilovskikhetal.2014, author = {Wang, Y. and Herzschuh, Ulrike and Shumilovskikh, L. S. and Mischke, Steffen and Birks, H. John B. and Wischnewski, J. and B{\"o}hner, J{\"u}rgen and Schluetz, F. and Lehmkuhl, F. and Diekmann, Bernhard and Wuennemann, B. and Zhang, C.}, title = {Open Access Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum - extending the concept of pollen source area to pollen-based climate reconstructions from large lakes}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-10-21-2014}, pages = {21 -- 39}, year = {2014}, abstract = {Pollen records from large lakes have been used for quantitative palaeoclimate reconstruction, but the influences that lake size (as a result of species-specific variations in pollen dispersal patterns that smaller pollen grains are more easily transported to lake centre) and taphonomy have on these climatic signals have not previously been systematically investigated. We introduce the concept of pollen source area to pollen-based climate calibration using the north-eastern Tibetan Plateau as our study area. We present a pollen data set collected from large lakes in the arid to semi-arid region of central Asia. The influences that lake size and the inferred pollen source areas have on pollen compositions have been investigated through comparisons with pollen assemblages in neighbouring lakes of various sizes. Modern pollen samples collected from different parts of Lake Donggi Cona (in the north-eastern part of the Tibetan Plateau) reveal variations in pollen assemblages within this large lake, which are interpreted in terms of the species-specific dispersal and depositional patterns for different types of pollen, and in terms of fluvial input components. We have estimated the pollen source area for each lake individually and used this information to infer modern climate data with which to then develop a modern calibration data set, using both the multivariate regression tree (MRT) and weighted-averaging partial least squares (WA-PLS) approaches. Fossil pollen data from Lake Donggi Cona have been used to reconstruct the climate history of the north-eastern part of the Tibetan Plateau since the Last Glacial Maximum (LGM). The meanannual precipitation was quantitatively reconstructed using WA-PLS: extremely dry conditions are found to have dominated the LGM, with annual precipitation of around 100 mm, which is only 32\% of present-day precipitation. A gradually increasing trend in moisture conditions during the Late Glacial is terminated by an abrupt reversion to a dry phase that lasts for about 1000 yr and coincides with "Heinrich event 1" in the North Atlantic region. Subsequent periods corresponding to the Bolling/Allerod interstadial, with annual precipitation (P-ann) of about 350 mm, and the Younger Dryas event (about 270 mm P-ann) are followed by moist conditions in the early Holocene, with annual precipitation of up to 400 mm. A drier trend after 9 cal. ka BP is followed by a second wet phase in the middle Holocene, lasting until 4.5 cal. ka BP. Relatively steady conditions with only slight fluctuations then dominate the late Holocene, resulting in the present climatic conditions. The climate changes since the LGM have been primarily driven by deglaciation and fluctuations in the intensity of the Asian summer monsoon that resulted from changes in the Northern Hemisphere summer solar insolation, as well as from changes in the North Atlantic climate through variations in the circulation patterns and intensity of the westerlies.}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} }