@misc{MegowRoehrSchmidtamBuschetal.2015, author = {Megow, J{\"o}rg and R{\"o}hr, Merle I. S. and Schmidt am Busch, Marcel and Renger, Thomas and Mitrić, Roland and Kirstein, Stefan and Rabe, J{\"u}rgen P. and May, Volkhard}, title = {Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79978}, pages = {6741 -- 6747}, year = {2015}, abstract = {The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory.}, language = {en} } @article{MegowRoehrSchmidtamBuschetal.2015, author = {Megow, J{\"o}rg and R{\"o}hr, Merle I. S. and Schmidt am Busch, Marcel and Renger, Thomas and Mitrić, Roland and Kirstein, Stefan and Rabe, J{\"u}rgen P. and May, Volkhard}, title = {Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {17}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/c4cp05945j}, pages = {6741 -- 6747}, year = {2015}, abstract = {The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory.}, language = {en} } @article{MegowRoehrBuschetal.2015, author = {Megow, J{\"o}rg and R{\"o}hr, Merle I. S. and Busch, Marcel and Renger, Thomas and Mitric, Roland and Kirstein, Stefan and Rabe, J{\"u}rgen P. and May, Volkhard}, title = {Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp05945j}, pages = {6741 -- 6747}, year = {2015}, abstract = {The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory.}, language = {en} } @article{FriedlRengerBerlepschetal.2016, author = {Friedl, Christian and Renger, Thomas and Berlepsch, Hans V. and Ludwig, Kai and Schmidt am Busch, Marcel and Megow, J{\"o}rg}, title = {Structure Prediction of Self-Assembled Dye Aggregates from Cryogenic Transmission Electron Microscopy, Molecular Mechanics, and Theory of Optical Spectra}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b05856}, pages = {19416 -- 19433}, year = {2016}, abstract = {Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 A. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30 and the-transition dipole moments of the chromophores form an angle of 74 with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the-particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates.}, language = {en} } @article{BuschEnglertRzazewskietal.1998, author = {Busch, Thomas and Englert, Bertold-Georg and Rzazewski, Kazimierz and Wilkens, Martin}, title = {Two cold atoms in a harmonic trap}, year = {1998}, abstract = {Two ultracold atoms moving in a trap interact weakly at a very short distance. This interaction can be modeled by a properly regularized contact potential. We solve the corresponding time-independent Schr{\"o}dinger equation under the assumption of a parabolic, spherically symmetric trapping potential.}, language = {en} } @article{AdelsbergerKulkarniJainetal.2010, author = {Adelsberger, Joseph and Kulkarni, Amit and Jain, Abhinav and Wang, Weinan and Bivigou Koumba, Achille Mayelle and Busch, Peter and Pipich, Vitaliy and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Thermoresponsive PS-b-PNIPAM-b-PS micelles : aggregation behavior, segmental dynamics, and thermal response}, issn = {0024-9297}, doi = {10.1021/Ma902714p}, year = {2010}, abstract = {We have studied I lie thermal behavior of amphiphilic, symmetric triblock copolymers having short, deuterated polystyrene (PS) end blocks and a large poly(N-isopropylacrylarnicle) (PNIPAM) middle block exhibiting a lower critical solution temperature (LCST) in aqueous solution. A wide range of concentrations (0.1-300 mg/mL) is investigated using it number of analytical methods such as fluorescence correlation spectroscopy (FCS), turbidimetry, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and neutron spin-echo spectroscopy (NSE). The critical micelle concentration is determined using FCS to be 1 mu M or less. The collapse of the micelles at the LCST is investigated using turbidimetry and DLS and shows a weak dependence on the degree of polymerization of the PNIPAM block. SANS with contrast matching allows its to reveal the core-shell Structure of the micelles as well as their correlation as a function of temperature. The segmental dynamics of the PNIPAM shell are studied as a function of temperature and arc found to be faster in the collapsed state than in the swollen state. The mode detected has a linear dispersion in q(2) and is found to be faster in the collapsed state as compared to the swollen state. We attribute this result to the averaging over mobile and immobilized segments.}, language = {en} } @article{AdelsbergerMeierKollBivigouKoumbaetal.2011, author = {Adelsberger, Joseph and Meier-Koll, Andreas and Bivigou Koumba, Achille Mayelle and Busch, Peter and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2382-3}, pages = {711 -- 720}, year = {2011}, abstract = {We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S).}, language = {en} } @article{GranacherPrieskeMajewskietal.2015, author = {Granacher, Urs and Prieske, Olaf and Majewski, M. and B{\"u}sch, Dirk and M{\"u}hlbauer, Thomas}, title = {The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {5}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1395519}, pages = {386 -- 394}, year = {2015}, abstract = {The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance.}, language = {en} } @misc{GranacherLesinskiBueschetal.2016, author = {Granacher, Urs and Lesinski, Melanie and B{\"u}sch, Dirk and M{\"u}hlbauer, Thomas and Prieske, Olaf and Puta, Christian and Gollhofer, Albert and Behm, David George}, title = {Effects of resistance training in youth athletes on muscular fitness and athletic performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {429}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406574}, pages = {14}, year = {2016}, abstract = {During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes.}, language = {en} }