@incollection{LueckBalderjahnKammetal.2000, author = {L{\"u}ck, Erika and Balderjahn, Ingo and Kamm, Birgit and Greil, Holle and Wallschl{\"a}ger, Hans-Dieter and Jessel, Beate and B{\"o}ckmann, Christine and Oberh{\"a}nsli, Roland and Soyez, Konrad and Schmeer, Ernst and Blumenstein, Oswald and Berndt, Klaus-Peter and Edeling, Thomas and Friedrich, Sabine and Kaden, Klaus and Scheller, Frieder W. and Petersen, Hans-Georg and Asche, Hartmut and Bronstert, Axel and Giest, Hartmut and Gaedke, Ursula and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Jeltsch, Florian and J{\"a}nkel, Ralph and Gzik, Axel and Bork, Hans-Rudolf and Bork, Hans-Rudolf}, title = {Umweltforschung f{\"u}r das Land Brandenburg : Arbeitsgruppen und Professuren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3797}, publisher = {Universit{\"a}t Potsdam}, year = {2000}, language = {de} } @article{KrolJaegerBronstertetal.2006, author = {Krol, Maarten and Jaeger, Annekathrin and Bronstert, Axel and G{\"u}ntner, Andreas}, title = {Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil}, series = {Journal of hydrology}, volume = {328}, journal = {Journal of hydrology}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2005.12.021}, pages = {417 -- 431}, year = {2006}, abstract = {Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved.}, language = {en} } @incollection{BronstertCrisologoHeistermannetal.2020, author = {Bronstert, Axel and Crisologo, Irene and Heistermann, Maik and {\"O}zt{\"u}rk, Ugur and Vogel, Kristin and Wendi, Dadiyorto}, title = {Flash-floods: more often, more severe, more damaging?}, series = {Climate change, hazards and adaptation options: handling the impacts of a changing climate}, booktitle = {Climate change, hazards and adaptation options: handling the impacts of a changing climate}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-37425-9}, issn = {1610-2010}, doi = {10.1007/978-3-030-37425-9_12}, pages = {225 -- 244}, year = {2020}, abstract = {In recent years, urban and rural flash floods in Europe and abroad have gained considerable attention because of their sudden occurrence, severe material damages and even danger to life of inhabitants. This contribution addresses questions about possibly changing environmental conditions which might have altered the occurrence frequencies of such events and their consequences. We analyze the following major fields of environmental changes. Altered high intensity rain storm conditions, as a consequence of regionalwarming; Possibly altered runoff generation conditions in response to high intensity rainfall events; Possibly altered runoff concentration conditions in response to the usage and management of the landscape, such as agricultural, forest practices or rural roads; Effects of engineering measures in the catchment, such as retention basins, check dams, culverts, or river and geomorphological engineering measures. We take the flash-flood in Braunsbach, SW-Germany, as an example, where a particularly concise flash flood event occurred at the end of May 2016. This extreme cascading natural event led to immense damage in this particular village. The event is retrospectively analyzed with regard to meteorology, hydrology, geomorphology and damage to obtain a quantitative assessment of the processes and their development. The results show that it was a very rare rainfall event with extreme intensities, which in combination with catchment properties and altered environmental conditions led to extreme runoff, extreme debris flow and immense damages. Due to the complex and interacting processes, no single flood cause can be identified, since only the interplay of those led to such an event. We have shown that environmental changes are important, but-at least for this case study-even natural weather and hydrologic conditions would still have resulted in an extreme flash flood event.}, language = {en} } @article{BronstertBuergerPfister2021, author = {Bronstert, Axel and B{\"u}rger, Gerhard and Pfister, Angela}, title = {Vorhersage und Projektion von Sturzfluten - Vorwort}, series = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, volume = {65}, journal = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, number = {6}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde, BfG}, address = {Koblenz}, issn = {1439-1783}, pages = {260 -- 261}, year = {2021}, language = {de} } @article{DeAraujoGuentnerBronstert2006, author = {De Araujo, Jos{\`e} Carlos and G{\"u}ntner, Andreas and Bronstert, Axel}, title = {Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil}, issn = {0262-6667}, doi = {10.1623/hysj.51.1.157}, year = {2006}, abstract = {A methodology is presented to assess the impact of reservoir silting oil water availability for semiarid environments, applied to seven representative watersheds in the state of Ceara, Brazil. Water yield is computed using stochastic modelling for several reliability levels and water yield reduction is quantified for the focus areas. The yield-volume elasticity concept, which indicates the relative yield reduction in terms of relative storage capacity of the reservoirs, is presented and applied. Results chow that storage capacity was reduced by 0.2\% year(-1) due to silting, that the risk of water shortage almost doubled in less than 50 years for the most critical reservoir, and that reduction of storage capacity had three times more impact oil yield reduction than the increase in evaporation. Average 90\% reliable yield-volume elasticity was 0.8, which means that the global water yield (Q(90)) in Ceara is expected to diminish yearly by 388 L s(-1) due to reservoir silting}, language = {en} } @book{BronstertCarreraKabatetal.2005, author = {Bronstert, Axel and Carrera, Jesus and Kabat, Pavel and L{\"u}tkemeier, Sabine}, title = {Coupled models for the hydrological cycle : integrating atmosphere, biosphere and pedosphere}, publisher = {Springer-Verlag Berlin Heidelberg}, address = {Berlin, Heidelberg}, isbn = {3-540-22371-1}, doi = {10.1007/b138919}, pages = {345 S.}, year = {2005}, language = {en} } @article{BronstertEngel2005, author = {Bronstert, Axel and Engel, H.}, title = {Ver{\"a}nderung der Abfl{\"u}sse}, series = {Warnsignal Klima - genug Wasser f{\"u}r alle? : wissenschaftliche Fakten}, journal = {Warnsignal Klima - genug Wasser f{\"u}r alle? : wissenschaftliche Fakten}, publisher = {Wissenschaftliche Auswertungen}, address = {Hamburg}, isbn = {978-3-9809668-0-1}, pages = {175 -- 181}, year = {2005}, language = {de} } @article{Bronstert2004, author = {Bronstert, Axel}, title = {Rainfall-runoff modelling for assessing impacts of climate and land-use change}, year = {2004}, language = {en} } @article{Bronstert2004, author = {Bronstert, Axel}, title = {Probleme, Grenzen und Herausforderungen der hydrologischen Modellierung: Wasserhaushalt und Abfluss}, year = {2004}, language = {de} } @article{KrauseBauerMorgneretal.2004, author = {Krause, Stefan and Bauer, Andreas and Morgner, Markus and Bronstert, Axel}, title = {Wasserhaushaltsmodellierung als Beitrag zur Erstellung eines nachhaltigen Flusseinzugsgebietsmanagements an der Unteren Havel}, isbn = {3-937758-18-6}, year = {2004}, language = {de} } @article{KrauseBronstert2004, author = {Krause, Stefan and Bronstert, Axel}, title = {Approximation of Groundwater - Surface Water - Interactions in a Mesoscale Lowland River Catchment}, year = {2004}, language = {en} } @article{KneisKnoescheBronstert2004, author = {Kneis, David and Kn{\"o}sche, R{\"u}diger and Bronstert, Axel}, title = {Ist eine Auswaschung von N{\"a}hrstoffen aus Flussgew{\"a}ssersedimenten eine realistische Option zur Trophiesenkung?}, isbn = {3-937758-18-6}, year = {2004}, language = {de} } @book{ZeheBolduanBaerdossyetal.2004, author = {Zehe, Erwin and Bolduan, Rainer and B{\"a}rdossy, Andr{\"a}s and Bronstert, Axel and Plate, Erich}, title = {Stofftransport in einem L{\"o}sseinzugsgebiet: Experimentelle Evidenz und numerische Modellierung.}, isbn = {3-937758-18-6}, year = {2004}, language = {de} } @article{BlumeBauerBronstert2004, author = {Blume, Theresa and Bauer, Andreas and Bronstert, Axel}, title = {Experimental techniques for the Investigation of Runoff Processes in a Small Catchment in the Chilean Andes}, isbn = {3-937758-18-6}, year = {2004}, language = {en} } @article{KrauseBronstert2004, author = {Krause, Stefan and Bronstert, Axel}, title = {Wasserhaushaltssimulationen unter Einbeziehung von Grundwasser - Oberfl{\"a}chenwasser - Kopplung zur Optimierung szenarienbasierter Handlungsoptionen f{\"u}r ein nachhaltiges Flussgebietsmanagement an der Unteren Havel}, isbn = {3-89958-072-9}, year = {2004}, language = {de} } @article{KneisKnoescheBronstert2004, author = {Kneis, David and Kn{\"o}sche, R{\"u}diger and Bronstert, Axel}, title = {Ist ein Netto-N{\"a}hrstoffexport aus Flussgew{\"a}ssersedimenten eine realistische Option zur Trophiesenkung?}, isbn = {3-937758-18-6}, year = {2004}, language = {de} } @article{GuentnerBronstert2004, author = {G{\"u}ntner, Andreas and Bronstert, Axel}, title = {Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas}, issn = {0022-1694}, year = {2004}, abstract = {The spatial variability of landscape features such as topography, soils and vegetation defines the spatial pattern of hydrological state variables like soil moisture. Spatial variability thereby controls the functional behaviour of the landscape in terms of its runoff response. A consequence of spatial variability is that exchange processes between landscape patches can occur at various spatial scales ranging from the plot to the basin scale. In semi-arid areas, the lateral redistribution of surface runoff between adjacent landscape patches is an important process. For applications to large river basins of 10(4)-10(5) km(2) in size, a multi-scale landscape discretization scheme is presented in this paper. The landscape is sub-divided into modelling units within a hierarchy of spatial scale levels. By delineating areas characterized by a typical toposequence, organised and random variability of landscape characteristics is captured in the model. Using runoff-runon relationships with transition frequencies based on areal fractions of modelling units, lateral surface and subsurface water fluxes between modelling units at the hillslope scale are represented. Thus, the new approach allows for a manageable description of interactions between fine-scale landscape features for inclusion in coarse-scale models. Model applications for the State of Ceara (148,000 km(2)) in the north- east of Brazil demonstrate the importance of taking into account landscape variability and interactions between landscape patches in a semi-arid environment. Using mean landscape characteristics leads to a considerable underestimation of infiltration-excess surface runoff and total simulated runoff. Re-infiltration of surface runoff and lateral redistribution processes between landscape patches cause a reduction of runoff volumes at the basin scale and contribute to the amplification of variations in runoff volumes relative to variations in rainfall volumes for semi-arid areas. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{GuentnerKroldeArajoetal.2004, author = {G{\"u}ntner, Andreas and Krol, Marten S. and de Arajo, Jos{\´e} Carlos and Bronstert, Axel}, title = {Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region}, issn = {0262-6667}, year = {2004}, abstract = {Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceara in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use}, language = {en} } @article{Bronstert2003, author = {Bronstert, Axel}, title = {Floods and climate change : interactions and impacts}, issn = {0272-4332}, year = {2003}, language = {en} } @article{GuenterBronstert2003, author = {G{\"u}nter, A. and Bronstert, Axel}, title = {Large-scale hydrological modelling of a semi-arid environment : model development, validation and application}, year = {2003}, language = {en} } @article{BronstertBardossy2003, author = {Bronstert, Axel and Bardossy, Andras}, title = {Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity}, year = {2003}, language = {en} } @article{KrolJaegerBronstert2003, author = {Krol, Marten S. and Jaeger, Annekathrin and Bronstert, Axel}, title = {Integrated modelling of climate change impacts in northeastern brazil}, year = {2003}, language = {en} } @article{PfisterKwadijkMusyetal.2003, author = {Pfister, L. and Kwadijk, J. and Musy, A. and Bronstert, Axel and Hoffmann, L.}, title = {Climate change, land use change and run-off prediction in the Rhine-Meuse basins}, issn = {1535-1459}, year = {2003}, abstract = {As a consequence of increasing winter rainfall totals and intensities over the second half of the 20th century, signs of increased flooding probability in many areas of the Rhine and Meuse basins have been documented. These changes affecting rainfall characteristics are most evidently due to an increase in westerly atmospheric circulation types. Land use changes, particularly urbanization, can have significant local effects in small basins (headwaters) with respect to flooding, especially during heavy local rainstorms, but no evidence exists that land use change has had significant effects on peak flows in the rivers Rhine and Meuse. For the 21st century, most global circulation models suggest higher winter rainfall totals. Most hydrological simulations of the Rhine-Meuse river basins suggest an increased flooding probability, with a progressive shift of the Rhine from a 'rain-fed/meltwater' river into a mainly 'rain-fed' river. A very limited effect of changes in land use on the discharge regime seems to exist for the main branches of the Meuse and Rhine rivers. For mesoscale basins, future changes in peak flows depend on the changes in the variability of extreme precipitations in combination with land use changes. Copyright (C) 2004 John Wiley Sons, Ltd}, language = {en} } @article{BronstertNiehoffBuerger2002, author = {Bronstert, Axel and Niehoff, Daniel and B{\"u}rger, Gerd}, title = {Effects of climate and land-use change on storm runoff generation : present knowledge and modelling capabilities}, year = {2002}, language = {en} } @article{MenzelNiehoffBuergeretal.2002, author = {Menzel, Lucas and Niehoff, Daniel and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Climate change impacts on river flooding : a modelling study of three meso-scale catchments}, year = {2002}, language = {en} } @article{NiehoffFritschBronstert2002, author = {Niehoff, Daniel and Fritsch, Uta and Bronstert, Axel}, title = {Land-use impacts on storm-runoff generation : scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany}, year = {2002}, language = {en} } @article{BronstertKrolJaegeretal.2002, author = {Bronstert, Axel and Krol, Marten S. and Jaeger, Annekathrin and G{\"u}ntner, Andreas}, title = {Integrated modelling of climate, water, soil, agricultural and socio-economic processes : a general introduction to the methodology and some exemplary results from the semi-arid Northeast of Brazil}, year = {2002}, language = {en} } @article{GuentnerBronstert2002, author = {G{\"u}ntner, Andreas and Bronstert, Axel}, title = {Process-based modelling of large-scale water availability in a semi-arid environment : process representation and scaling issues}, year = {2002}, language = {en} } @misc{BlumeZeheBronstert2009, author = {Blume, Theresa and Zehe, Erwin and Bronstert, Axel}, title = {Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44924}, year = {2009}, abstract = {Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.}, language = {en} } @inproceedings{ZeheBronstertItzerottetal.2006, author = {Zehe, Erwin and Bronstert, Axel and Itzerott, Sibylle and B{\´a}rdossy, Andr{\´a}s and Ihringer, J{\"u}rgen}, title = {Hochwasservorhersage, Großhangbewegungen, Schadstofftransport}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7128}, year = {2006}, abstract = {Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {de} } @inproceedings{Bronstert2006, author = {Bronstert, Axel}, title = {Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und angewandte Fernerkundung (IMAF) an der Universit{\"a}t Potsdam : Gegenwart und Zukunft}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7021}, year = {2006}, abstract = {Stand des IMAF zu Beginn des Jahres 2006 Zum 1. April 2005 wurde per Beschluss des Rektorats der Universit{\"a}t Potsdam das Interdisziplin{\"a}re Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung (IMAF) an der Universit{\"a}t Potsdam eingerichtet. Diesem Beschluss gingen knapp zwei Jahre konzeptionelle, organisatorische und administrative Vorarbeiten voraus. Inzwischen ist das IMAF also offiziell gegr{\"u}ndet, der Vorstand wurde „bestellt" (Prof. M. Mutti. Prof. E. Zehe, Prof. A. Bronstert), der Gesch{\"a}ftsf{\"u}hrer bzw. wissenschaftliche Koordinator Dr. M. K{\"u}hling arbeitet in dieser Funktion seit Sommer 2005 und seit kurzem ist auch die 1. Version der Homepage des IMAF (http://www.uni-potsdam.de/imaf/) frei geschaltet. Auch die Infrastruktur des IMAF ist in der Entstehungsphase: B{\"u}ror{\"a}ume sind versprochen (wenn auch noch nicht bezugsfertig) im Haus 13 auf dem Campus Golm der Universit{\"a}t Potsdam und der 1. erfolgreiche Drittmittelantrag erbrachte 8 leistungsf{\"a}hige Tischrechner und einen Server f{\"u}r das IMAF aus EU-Mitteln. Wichtiger als die administrativen und organisatorischen Arbeiten sind aber die inhaltlichen Forstschritte. Hier ist die große Resonanz, die die Gr{\"u}ndung des IMAF sowohl innerhalb als auch außerhalb der Universit{\"a}t gefunden hat, besonders erfreulich. {\"U}ber 30 Angeh{\"o}rige des Zentrums sind inzwischen zu verzeichnen und es gibt bereits eine Reihe von wissenschaftlichen Projektinitiativen und Ideen f{\"u}r dieses Zentrum. Neben den wissenschaftlichen Arbeiten am IMAF ist ein zweites Hauptziel f{\"u}r dieses Zentrum die Entwicklung und der Ausbau eines strukturierten Ausbildungsangebotes f{\"u}r Musterdynamik und angewandte Fernerkundung. Dies sollen gleichermaßen Masterstudenten als auch Doktoranden der Universit{\"a}t Potsdam und der mit ihr assoziierten außeruniversit{\"a}ren Institute nutzen. Zudem werden Kurse und Weiterbildungsveranstaltungen mit nationalen und internationalen Experten angestrebt. Neben diesen positiven Entwicklungen gibt es auch (noch ??) {\"u}ber einige M{\"a}ngel zu berichten: Das Sekretariat ist nach wie vor unbesetzt, die Finanzausstattung des Zentrums ist v{\"o}llig ungen{\"u}gend und die im Konzept f{\"u}r das Zentrum beantragte Wissenschaftlerstelle f{\"u}r Softwareanwendung ist nicht in Sicht. F{\"u}r einen Erfolg des Zentrums ist es unbedingt notwendig, dass sich diese Situation deutlich verbessert!! Forschungsschwerpunkte des IMAF R{\"a}umliche Muster und deren Struktur in der Umwelt R{\"a}umliche Muster sind in vielen naturwissenschaftlichen Disziplinen (Hydrologie, {\"O}kologie, Geologie, Biologie, Chemie, Physik) von zentraler Bedeutung. Z.B. bestimmen die r{\"a}umlichen (und zeitlichen) Muster von Bodeneigenschaften und Vegetation in ihrem Zusammenspiel mit den Mustern von Niederschlag und Strahlungsinput maßgeblich den Wasser- und Stoffhaushalt auf unterschiedlichsten Skalen und f{\"u}hren {\"u}ber R{\"u}ckkopplung wiederum zu Ver{\"a}nderungen in Klima, Vegetation und {\"O}kosystemen. Vom kleinr{\"a}umigen Transport von Schadstoffen und von der Hochwasserentstehung bis zur Frage nach den regionalen und globalen Ver{\"a}nderungen von Klima, Vegetation und Landnutzung seien hier nur einige Problemkreise genannt, in denen Muster und Musterdynamik eine zentrale Stellung einnehmen. Dar{\"u}ber hinaus liefert die Betrachtung der zeitlichen Ver{\"a}nderung von r{\"a}umlichen Mustern, in Erg{\"a}nzung zur klassischen Erfassung dynamischer Prozesse in Form von Messungen lokaler zeitlicher {\"A}nderungen, eine v{\"o}llig neue Perspektive auf Dynamik und er{\"o}ffnet damit v{\"o}llig neue wissenschaftliche M{\"o}glichkeiten. Aktuelle und sehr dr{\"a}ngende Fragen innerhalb dieses Forschungsschwerpunktes sind unter anderem: • Analyse der generelle Raumstruktur von Geodaten (Variabilit{\"a}t, Struktur, Konnektivit{\"a}t); • Thematische Verbindungen verschiedener Datenebenen und M{\"o}glichkeiten f{\"u}r deren Assimilation; • M{\"o}glichkeiten und Grenzen des Skalen{\"u}bergangs zwischen verschiedenen r{\"a}umlichen Aufl{\"o}sungen und Informationsquellen; • Ableitung der zeitlichen Dynamik bzw. Entwicklung von großen fl{\"a}chenhaften Datenfeldern. Angewandte Fernerkundung Wie keine andere Technik bietet die Fernerkundung in jeglicher Form (unter anderem Satelliten, flugzeuggetragene Sensoren, Wetterradar und auch geophysikalische Methoden) umfangreiche M{\"o}glichkeiten, r{\"a}umliche Muster und deren zeitliche Ver{\"a}nderungen zu erfassen. Allen Methoden der Fernerkundung gemein ist, dass sie nur indirekte Ergebnisse liefern. Das heißt, es besteht nur ein mittelbarer Zusammenhang zwischen dem beobachteten Signal, meist der Reflektivit{\"a}t oder Emissivit{\"a}t elektromagnetischer Strahlung in verschiedenen Spektralbereichen (optisch oder Radar), und der eigentlich interessierenden Gr{\"o}ße, wie dem Feuchtezustand der Vegetation, der Bodenfeuchte oder Bodenrauhigkeit, der Niederschlagsintensit{\"a}t, dem Zustand der Schneedecke oder der Ausdehnung eines Oberfl{\"a}chenfilms auf Gew{\"a}ssern. Ein Satellitenbild enth{\"a}lt beispielsweise immer die spektrale Signatur des r{\"a}umlichen Musters mehrerer der oben genannten Einflussgr{\"o}ßen, was die Extraktion oder Diskriminierung der eigentlich interessierenden Gr{\"o}ße erschwert. Dieser „vermischte" Charakter der Fernerkundungsdaten bietet aber auch immense Chancen. So lassen sich durch geeignete Interpretationsverfahren aus jedem mit hohem finanziellem und technischem Aufwand erstellten Satellitenbild zahlreiche und im Detail v{\"o}llig unterschiedliche Fragestellungen bearbeiten. Die Extraktion der gew{\"u}nschten Information aus dem Fernerkundungssignal f{\"u}hrt mathematisch gesehen meist auf die L{\"o}sung so genannter inverser, schlecht gestellter Probleme. Somit beinhaltet die interdisziplin{\"a}re Nutzung von Fernerkundung auch ein hohes methodisches Synergiepotential. Durch die heutigen technischen M{\"o}glichkeiten zur Archivierung auch sehr umfangreicher raumbezogener Informationen ist die Bearbeitung zu jedem beliebigen Zeitpunkt nach der Aufnahme m{\"o}glich - zum Beispiel bis entsprechend lange Zeitreihen und/oder geeignete Interpretationsverfahren zur Verf{\"u}gung stehen. Tats{\"a}chlich d{\"u}rfte der weitaus gr{\"o}ßte Teil der raumbezogenen Informationen, die in den bisher erhobenen Fernerkundungsdaten stecken, nur in Ans{\"a}tzen ausgewertet sein. Einer bereits sehr hoch entwickelten technischen Dimension der Fernerkundung steht ein gewisses Defizit im Umfang ihrer Anwendung in den verschiedenen naturwissenschaftlichen Disziplinen gegen{\"u}ber. Aktuelle und sehr dr{\"a}ngende Fragen innerhalb dieses Forschungsschwerpunktes sind unter anderem: • Nutzung der r{\"a}umlichen und inhaltlichen Breite von Fernerkundungsinformationen; • Verbindung mit automatisierten, u.a. geophysikalischen Methoden des „ground-truthings"; • Identifizierung der Grenzen bzgl. Repr{\"a}sentanz der Daten (spektral, raum-zeitliche Aufl{\"o}sung); • Verbindung unterschiedlicher Methoden der Fernerkundung und der Geophysik. Dieser Beitrag illustriert die o.g. Fragestellungen anhand einiger Darstellungen aus verschiedenen wissenschaftlichen Disziplinen und erl{\"a}utert 2 Beispiele zu beabsichtigten Forschungsprojekten: • Erfassung und Bedeutung von Boden-Oberfl{\"a}cheneigenschaften auf die Abflussbildung von Landschaften; • Ph{\"a}nomene des Stofftransportes in homogenen vs. heterogenen B{\"o}den.}, language = {de} } @article{TittelBorkRoepkeetal.2000, author = {Tittel, J{\"o}rg and Bork, Rudolf and R{\"o}pke, Bj{\"o}rn and Geldmacher, Karl and Schnur, Tilo and Faust, Berno and Schaphoff, Sibyll and Dalchow, Claus and Woithe, Franka and Bronstert, Axel and Jeltsch, Florian and Jessel, Beate and Zschalich, Andrea and R{\"o}ßling, Holger and Spindler, Joris and Gaedke, Ursula and Tielb{\"o}rger, Katja and Kadmon, R. and M{\"u}ller, J. and Bissinger, Vera and Weithoff, Guntram and Wallschl{\"a}ger, Hans-Dieter and Wiegleb, Gerhard}, title = {Umweltforschung f{\"u}r das Land Brandenburg}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {8}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3828}, pages = {80 -- 134}, year = {2000}, abstract = {BISSINGER, V.; TITTEL, J.: Process rates and growth limiting factors of planktonic algae (Chlamydomonas sp.) from extremely acidic (pH 2,5 - 3) mining lakes in Germany ; BORK, H.-R. et al.: Erodierte Autos und Brunnen in Oregon, USA ; BRONSTERT, A. et al.: Bewirtschaftunsm{\"o}glichkeiten im Einzugsgebiet der Havel ; JELTSCH, F. et al.: Beweidung als Degradationsfaktor in ariden und semiariden Weidesystemen ; JELTSCH, F. et al.: Entstehung und Bedeutung r{\"a}umlicher Vegetationsstrukturen in Trockensavannen: Baum-Graskoexistenz und Artenvielfalt ; JESSEL, B. et al.: Bodenbewertung f{\"u}r Planungs- und Zulassungsverfahren in Brandenburg ; JESSEL, B.; ZSCHALICH, A.: Erarbeitung von Ausgleichs- und Ersatzmaßnahmen f{\"u}r die Wert- und Funktionselemente des Landschaftsbildes ; R{\"O}ßLING, H. et al.: Umsetzung von Ausgleichs- und Ersatzmaßnahmen beim Ausbau der Bundesautobahn A 9 ; SPINDLER, J.; GAEDKE, U.: Estimating production in plankton food webs from biomass size spectra and allometric relationships ; TIELB{\"O}RGER, K. et al.: Sukzessionsprozesse in einem Sandd{\"u}nengebiet nach Ausschluß von Beweidung ; TIELB{\"O}RGER, K. et al.: Populationsdynamische Funktionen von Ausbreitung und Dormanz ; TIELB{\"O}RGER, K. et al.: Raum-zeitliche Populationsdynamik von einj{\"a}hrigen W{\"u}stenpflanzen ; TITTEL, J. et al.: Ressourcennutzung und -weitergabe im planktischen Nahrungsnetz eines extrem sauren (pH 2,7) Tagebausees ; WALLSCHL{\"A}GER, D.; WIEGLEB, G.: Offenland-Management auf ehemaligen und in Nutzung befindlichen Truppen{\"u}bungspl{\"a}tzen im pleistoz{\"a}nen Flachland Nordostdeutschlands: Naturschutzfachliche Grundlagen und praktische Anwendungen ; WEITHOFF, G.; GAEDKE, U.: Planktische R{\"a}uber-Beute-Systeme: Experimentelle Untersuchung von {\"o}kologischen Synchronisationen}, language = {de} } @article{BlumensteinBronstertGuenteretal.2000, author = {Blumenstein, Oswald and Bronstert, Axel and G{\"u}nter, A. and Katzenmeier, D. and Friedrich, Sabine and Geldmacher, Karl and Bork, Rudolf and R{\"o}pke, Bj{\"o}rn and Schaphoff, Sibyll and Schnur, Tilo and Woithe, Franka and Dalchow, Claus and Faust, Berno and Itzerott, Sibylle and Kaden, Klaus and Kn{\"o}sche, R{\"u}diger}, title = {Umweltforschung f{\"u}r das Land Brandenburg}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {8}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3845}, pages = {136 -- 173}, year = {2000}, abstract = {BLUMENSTEIN, O.: Investigation of Environmental Quality and Social Structures in a Mining Area in the North West Province of South Africa ; BRONSTERT, A.; G{\"U}NTNER, A.: A large-scale hydrological model for the semi-arid environment of north-eastern Brazil ; BRONSTERT, A. et al.: Hochwasserproblematik und der Zusammenhang mit Landnutzungs- und Klima{\"a}nderungen ; FRIEDRICH, S.: Vergleichende Untersuchungen zur Wasserqualit{\"a}t des anfallenden Regenwassers an den 14 Regenwassereinl{\"a}ufen der Stadt Potsdam ; GELDMACHER, K. et al.: Bodenzerst{\"o}rung im Palouse, Washington, USA ; ITZEROTT, S.; KADEN, K.: Modellierung der fl{\"a}chenhaften Verdunstung im Gebiet der Unteren Havel ; KN{\"O}SCHE, R.: Das remobilisierbare N{\"a}hrstoffpotential in Augew{\"a}ssersedimenten einer Tieflandflußaue}, language = {de} } @article{MeisslFormayerKlebinderetal.2017, author = {Meißl, Gertraud and Formayer, Herbert and Klebinder, Klaus and Kerl, Florian and Sch{\"o}berl, Friedrich and Geitner, Clemens and Markart, Gerhard and Leidinger, David and Bronstert, Axel}, title = {Climate change effects on hydrological system conditions influencing generation of storm runoff in small Alpine catchments}, series = {Hydrological processes : an international journal}, volume = {31}, journal = {Hydrological processes : an international journal}, number = {6}, publisher = {Wiley}, address = {New York}, issn = {0885-6087}, doi = {10.1002/hyp.11104}, pages = {1314 -- 1330}, year = {2017}, abstract = {Floods and debris flows in small Alpine torrent catchments (<10km(2)) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude-frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Langentalbach catchment) were investigated by both field experiments and process-based simulation. Rainfall-runoff model (HQsim) runs driven by localized climate scenarios (CNRM-RM4.5/ARPEGE, MPI-REMO/ECHAM5 and ICTP-RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature-controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high-altitude catchment is less sensitive to climate change-induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation-related small proportion of sensitive areas. For the period 2071-2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60\% or even less in summer in all catchments. In contrast, the number of days with dried-out litter layers causing hydrophobic effects will increase by up to 8\%-11\% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10\%.}, language = {en} } @article{BronstertAgarwalBoessenkooletal.2018, author = {Bronstert, Axel and Agarwal, Ankit and Boessenkool, Berry and Crisologo, Irene and Fischer, Madlen and Heistermann, Maik and Koehn-Reich, Lisei and Andres Lopez-Tarazon, Jose and Moran, Thomas and Ozturk, Ugur and Reinhardt-Imjela, Christian and Wendi, Dadiyorto}, title = {Forensic hydro-meteorological analysis of an extreme flash flood}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {630}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.02.241}, pages = {977 -- 991}, year = {2018}, abstract = {The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100 years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Hydrology and Earth System Sciences}, volume = {25}, journal = {Hydrology and Earth System Sciences}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1607-7938}, pages = {19}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} } @article{MamedeGuentnerMedeirosetal.2018, author = {Mamede, George Leite and Guentner, Andreas and Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Modeling the Effect of Multiple Reservoirs on Water and Sediment Dynamics in a Semiarid Catchment in Brazil}, series = {Journal of Hydrologic Engineering}, volume = {23}, journal = {Journal of Hydrologic Engineering}, number = {12}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {1084-0699}, doi = {10.1061/(ASCE)HE.1943-5584.0001701}, pages = {13}, year = {2018}, abstract = {Taking into account the climatic conditions of the semiarid region of Brazil, with its intermittent rivers and long periods of water scarcity, a dense network of surface reservoirs (on average one dam every 5 km(2)) of very different sizes has been built. The impact of such a network on water and sediment dynamics constitutes a remarkable challenge for hydrologists. The main objective of this work is to present a novel way of simulating water and sediment fluxes through such high-density reservoir networks, which enables the assessment of water and sediment retention in those structures. The new reservoir modeling approach has been coupled with the fully process-oriented and semidistributed hydrological WASA-SED model, which was tailored for semiarid hydroclimatological characteristics. This integrated modeling system was applied to the 933-km(2) Bengue catchment, located in semiarid northeastern Brazil, which has a network of 114 reservoirs with a wide range of surface areas (from 0.003 to 350 ha). The small reservoirs were grouped into size classes according to their storage capacity and a cascade routing scheme was applied to describe the upstream-downstream position of the classes; the large reservoirs were handled explicitly in the reservoir modeling approach. According to the model results, the proposed approach is capable of representing the water and sediment fluxes though the entire reservoir network with reasonable accuracy. In addition, the model shows that the dynamics of water and sediment within the Bengue catchment are strongly impacted by the presence of multiple reservoirs, which are able to retain approximately 21\% of the generated runoff and almost 42\% of the sediment yield of the catchment for the simulation period, from 2000 to 2012. (C) 2018 American Society of Civil Engineers.}, language = {en} } @article{DidovetsKrysanovaBuergeretal.2019, author = {Didovets, Iulii and Krysanova, Valentina and B{\"u}rger, Gerd and Snizhko, Sergiy and Balabukh, Vira and Bronstert, Axel}, title = {Climate change impact on regional floods in the Carpathian region}, series = {Journal of hydrology : Regional studies}, volume = {22}, journal = {Journal of hydrology : Regional studies}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5818}, doi = {10.1016/j.ejrh.2019.01.002}, pages = {14}, year = {2019}, abstract = {Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5\% to 62\%, and moderate increase in the Prut ranging from 11\% to 22\%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations.}, language = {en} } @article{BuergerPfisterBronstert2019, author = {B{\"u}rger, Gerd and Pfister, A. and Bronstert, Axel}, title = {Temperature-Driven Rise in Extreme Sub-Hourly Rainfall}, series = {Journal of climate}, volume = {32}, journal = {Journal of climate}, number = {22}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0894-8755}, doi = {10.1175/JCLI-D-19-0136.1}, pages = {7597 -- 7609}, year = {2019}, abstract = {Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29\% and in 3-yr return levels (RL) +27\%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30\% for MC and by 83\% for MC+; the RL rises by 14\% for MC and by 33\% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature.}, language = {en} } @article{VormoorHeistermannBronstertetal.2018, author = {Vormoor, Klaus Josef and Heistermann, Maik and Bronstert, Axel and Lawrence, Deborah}, title = {Hydrological model parameter (in)stability}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {63}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {7}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2018.1466056}, pages = {991 -- 1007}, year = {2018}, abstract = {This paper investigates the transferability of calibrated HBV model parameters under stable and contrasting conditions in terms of flood seasonality and flood generating processes (FGP) in five Norwegian catchments with mixed snowmelt/rainfall regimes. We apply a series of generalized (differential) split-sample tests using a 6-year moving window over (i) the entire runoff observation periods, and (ii) two subsets of runoff observations distinguished by the seasonal occurrence of annual maximum floods during either spring or autumn. The results indicate a general model performance loss due to the transfer of calibrated parameters to independent validation periods of -5 to -17\%, on average. However, there is no indication that contrasting flood seasonality exacerbates performance losses, which contradicts the assumption that optimized parameter sets for snowmelt-dominated floods (during spring) perform particularly poorly on validation periods with rainfall-dominated floods (during autumn) and vice versa.}, language = {en} } @misc{PetrowHeistermannBronstert2017, author = {Petrow, Theresia and Heistermann, Maik and Bronstert, Axel}, title = {Analysis of Flash Floods in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, pages = {212 -- 212}, year = {2017}, language = {en} } @misc{VormoorHeistermannBronstertetal.2018, author = {Vormoor, Klaus Josef and Heistermann, Maik and Bronstert, Axel and Lawrence, Deborah}, title = {Hydrological model parameter (in)stability}, series = {Hydrological Sciences Journal}, journal = {Hydrological Sciences Journal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413008}, pages = {18}, year = {2018}, abstract = {This paper investigates the transferability of calibrated HBV model parameters under stable and contrasting conditions in terms of flood seasonality and flood generating processes (FGP) in five Norwegian catchments with mixed snowmelt/rainfall regimes. We apply a series of generalized (differential) split-sample tests using a 6-year moving window over (i) the entire runoff observation periods, and (ii) two subsets of runoff observations distinguished by the seasonal occurrence of annual maximum floods during either spring or autumn. The results indicate a general model performance loss due to the transfer of calibrated parameters to independent validation periods of -5 to -17\%, on average. However, there is no indication that contrasting flood seasonality exacerbates performance losses, which contradicts the assumption that optimized parameter sets for snowmelt-dominated floods (during spring) perform particularly poorly on validation periods with rainfall-dominated floods (during autumn) and vice versa.}, language = {en} } @article{VormoorRosslerBuergeretal.2017, author = {Vormoor, Klaus Josef and Rossler, Ole and B{\"u}rger, Gerd and Bronstert, Axel and Weingartner, Rolf}, title = {When timing matters-considering changing temporal structures in runoff response surfaces}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {142}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-017-1940-1}, pages = {213 -- 226}, year = {2017}, abstract = {Scenario-neutral response surfaces illustrate the sensitivity of a simulated natural system, represented by a specific impact variable, to systematic perturbations of climatic parameters. This type of approach has recently been developed as an alternative to top-down approaches for the assessment of climate change impacts. A major limitation of this approach is the underrepresentation of changes in the temporal structure of the climate input data (i.e., the seasonal and day-to-day variability) since this is not altered by the perturbation. This paper presents a framework that aims to examine this limitation by perturbing both observed and projected climate data time series for a future period, which both serve as input into a hydrological model (the HBV model). The resulting multiple response surfaces are compared at a common domain, the standardized runoff response surface (SRRS). We apply this approach in a case study catchment in Norway to (i) analyze possible changes in mean and extreme runoff and (ii) quantify the influence of changes in the temporal structure represented by 17 different climate input sets using linear mixed-effect models. Results suggest that climate change induced increases in mean and peak flow runoff and only small changes in low flow. They further suggest that the effect of the different temporal structures of the climate input data considerably affects low flows and floods (at least 21\% influence), while it is negligible for mean runoff.}, language = {en} } @article{HuangHattermannKrysanovaetal.2013, author = {Huang, Shaochun and Hattermann, Fred Fokko and Krysanova, Valentina and Bronstert, Axel}, title = {Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {116}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-012-0586-2}, pages = {631 -- 663}, year = {2013}, abstract = {A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961-2000 (deviation within +/- 10 \%). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021-2060, 2061-2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.}, language = {en} } @article{MedeirosdeAraujoBronstert2009, author = {Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Interception measurements and assessment of Gash model performance for a tropical semi-arid region}, issn = {0045-6888}, year = {2009}, abstract = {Semi-arid environments usually face water scarcity and conflicts for its use; therefore a complete understanding of the water balance in these regions is desired. To evaluate interception, measurements of precipitation, throughfall and stemflow were carried out in a Brazilian tropical semi-arid experimental watershed with well preserved Caatinga vegetation. Data analysis indicates that interception losses correspond to 13\% of total rainfall, representing an important process in the watershed's water balance, where runoff is only 6\% of total precipitation. Gash interception model was applied in the region with good results for long term simulation. Nevertheless, the model produced significant but not systematic errors on a daily basis. This was attributed to its incapability of representing the temporal variation of precipitation during the event, which is a major factor affecting interception. Rainfall intensity was shown to be a good parameter to determine an applicability threshold for Gash model in the study area.}, language = {en} } @article{BronstertKneisBogena2009, author = {Bronstert, Axel and Kneis, David and Bogena, Heye R.}, title = {Interactions and feedbacks in hydrological change : relevance and possibilities of modelling}, issn = {1439-1783}, year = {2009}, abstract = {The hydrological cycle is a dynamic system by its nature, but sometimes accelerated through anthropogenic activity. A "hydrological change" (i.e. a water cycle that is significantly changing over a longer period of time) can be very different in character, depending on the specific natural conditions and the underlying spatial and temporal scales. Such changes may affect the availability and quality of water as essential pre-requisites for human development and ecosystem stability. Hydrological extremes, such as floods and droughts, may also be affected, what is also vitally important, because of their profound economic and societal impacts. Anthropogenically induced hydrological change can be attributed to three main external causes: first, the Earth's climate is changing significantly and thus directly affecting the terrestrial hydro-systems via the exchange of energy and heat. The second major issue is the land cover and its management that has been modified fundamentally by conversion of land for agriculture, forestry, and other purposes such as industrialisation and urbanisation. Finally, water resources are being used more than ever for human development, especially for agriculture, industrial activities, and navigation. If the regional terrestrial hydrological cycle is changing and counter-measures are desirable, it is from a scientific perspective mandatory to understand the extent and nature of such changes, and, especially, to identify their possible anthropogenic origin. There are, however, fundamental gaps in our knowledge, in particular about the role of feedbacks between individual processes and compartments of the hydrological cycle or the relevance of the interactions with other sub-systems of our planet, such as the atmosphere or the vegetation. This paper mentions several examples of hydrological change and discusses their identification, interaction processes, and feedback mechanisms, along with modelling issues. The possibilities and limitations of modelling are demonstrated by means of two studies: one from the river-lake system on the Middle-Havel River and one from the catchment of the Wahnbach Reservoir. The applied model systems comprise a series of consecutively coupled individual models (so-called one-way-coupling). Model systems that are able reflect feedback effects (two-way- coupling) are still in the development stage. It became clear that the applied model systems were able to reproduce the observed dynamics of the hydrological cycle and of selected matter fluxes. However, one has to be aware that the simulated time periods and scenarios represent rather moderately transient conditions, what is the justification why the one-way-coupling seems to be applicable. Furthermore, it was shown that the modelling uncertainty is considerably large. Nevertheless, this uncertainty can be distinguished from effects of changed internal systems dynamics or from changed boundary conditions, what is a basis for the usability of such model systems for prognostic purposes.}, language = {en} } @article{JagdhuberHajnsekBronstertetal.2013, author = {Jagdhuber, Thomas and Hajnsek, Irena and Bronstert, Axel and Papathanassiou, Konstantinos Panagiotis}, title = {Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition}, series = {IEEE transactions on geoscience and remote sensing}, volume = {51}, journal = {IEEE transactions on geoscience and remote sensing}, number = {4}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0196-2892}, doi = {10.1109/TGRS.2012.2209433}, pages = {2201 -- 2215}, year = {2013}, abstract = {The estimation of volumetric soil moisture under low agricultural vegetation from fully polarimetric synthetic aperture radar (SAR) data at L-band using a multi-angular polarimetric decomposition is investigated. Radar polarimetry provides the framework to decompose the backscattered signal into different canonical scattering mechanisms referring to scattering contributions from the underlying soil and the vegetation cover. Multiangular observation diversity further increases the information space for soil moisture inversion enabling higher inversion rates and a stable inversion performance. The developed approach was applied on the multi-angular L-band data set acquired by German Aerospace Center's ESAR sensor as part of the OPAQUE campaign in 2008. The obtained results are compared against ground measurements collected by the OPAQUE team over a variety of vegetated agricultural fields. The validation of the estimated against ground measured soil moisture results in an root mean square error level of 6-8 vol.\% including all test fields with a variety of crop types.}, language = {en} } @article{CostaFoersterdeAraujoetal.2013, author = {Costa, Alexandre Cunha and F{\"o}rster, Saskia and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Analysis of channel transmission losses in a dryland river reach in north-eastern Brazil using streamflow series, groundwater level series and multi-temporal satellite data}, series = {Hydrological processes}, volume = {27}, journal = {Hydrological processes}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1099-1085}, doi = {10.1002/hyp.9243}, pages = {1046 -- 1060}, year = {2013}, abstract = {Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi-temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi-arid north-eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30\% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre-events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach.}, language = {en} } @article{MohrCoppusIroumeetal.2013, author = {Mohr, Christian Heinrich and Coppus, Ruben and Iroume, Andres and Huber, Anton and Bronstert, Axel}, title = {Runoff generation and soil erosion processes after clear cutting}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20047}, pages = {814 -- 831}, year = {2013}, abstract = {Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models.}, language = {en} } @book{BronstertSeiertOberholzer1993, author = {Bronstert, Axel and Seiert, S. and Oberholzer, Gustav}, title = {Maßnahmen der Flurbereinigung und ihre Wirkung auf das Abflußverhalten l{\"a}ndlicher Gebiete : gemeinsamer Bericht des Instituts f{\"u}r Hydrologie und Wasserwirtschaft, Universit{\"a}t Karlsruhe, und des Instituts f{\"u}r Liegenschaftswesen, Planung und Bodenordnung, Universit{\"a}t der Bundeswehr, Neubiberg bei M{\"u}nchen}, series = {Flurneuordnung und Landentwicklung Baden W{\"u}rttemberg}, volume = {3}, journal = {Flurneuordnung und Landentwicklung Baden W{\"u}rttemberg}, publisher = {LfU}, address = {Karlsruhe}, pages = {145 S.}, year = {1993}, language = {de} } @article{KneisFoersterBronstert2009, author = {Kneis, David and F{\"o}rster, Saskia and Bronstert, Axel}, title = {Simulation of water quality in a flood detention area using models of different spatial discretization}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2009.04.006}, year = {2009}, abstract = {Detention areas provide a means to lower peak discharges in rivers by temporarily storing excess water. In the case of extreme flood events, the storage effect reduces the risk of dike failures or extensive inundations for downstream reaches and near the site of abstraction. Due to the large amount of organic matter contained in the river water and the inundation of terrestrial vegetation in the detention area, a deterioration of water quality may occur. In particular, decay processes can cause a severe depletion of dissolved oxygen (DO) in the temporary water body. In this paper, we studied the potential of a water quality model to simulate the DO dynamics in a large but shallow detention area to be built at the Elbe River (Germany). Our focus was on examining the impact of spatial discretization on the model's performance and usability. Therefore, we used a zero-dimensional (OD) and a two-dimensional (2D) modeling approach in parallel. The two approaches solely differ in their spatial discretization, while conversion processes, parameters, and boundary conditions were kept identical. The dynamics of DO simulated by the two models are similar in the initial flooding period but diverge when the system starts to drain. The deviation can be attributed to the different spatial discretization of the two models, leading to different estimates of flow velocities and water depths. Only the 2D model can account for the impact of spatial variability on the evolution of state variables. However, its application requires high efforts for pre- and post-processing and significantly longer computation times. The 2D model is, therefore, not suitable for investigating various flood scenarios or for analyzing the impact of parameter uncertainty. For practical applications, we recommend to firstly set up a fast-running model of reduced spatial discretization, e.g. a OD model. Using this tool, the reliability of the simulation results should be checked by analyzing the parameter uncertainty of the water quality model. A particular focus may be on those parameters that are spatially variable and, therefore, believed to be better represented in a 2D approach. The benefit from the application of the more costly 2D model should be assessed, based on the analyses carried out with the OD model. A 2D model appears to be preferable only if the simulated detention area has a complex topography, flow velocities are highly variable in space, and the parameters of the water quality model are well known.}, language = {en} } @article{BronstertKneisBogena2009, author = {Bronstert, Axel and Kneis, David and Bogena, Heye R.}, title = {Interaktionen und R{\"u}ckkopplungen beim hydrologischen Wandel : Relevanz und M{\"o}glichkeiten der Modellierung}, issn = {1439-1783}, year = {2009}, language = {de} } @book{BronstertJuergens1994, author = {Bronstert, Axel and J{\"u}rgens, M.}, title = {Modellsystem Hillflow : physikalisch begr{\"u}ndete und fl{\"a}chendetalierte Modellierung der Abflußbildung und der Bodenwasserdynamik von ebenen Standorten, H{\"a}ngen und Kleineinzugsgebieten ; Modelldokumentation und Benutzerhandbuch, Version 1.0}, publisher = {Inst. f{\"u}r Hydrologie und Wasserwirtschaft, Universit{\"a}t Karlsruhe}, address = {Karlsruhe}, pages = {65 S.}, year = {1994}, language = {de} } @article{IroumeCareyBronstertetal.2011, author = {Iroume, Andres and Carey, Patricio and Bronstert, Axel and Huber, Anton and Palacios, Hardin}, title = {GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile}, series = {Revista t{\´e}cnica de la Facultad de Ingenieria}, volume = {34}, journal = {Revista t{\´e}cnica de la Facultad de Ingenieria}, number = {2}, publisher = {Facultad de Ingenieria Universidad del Zulia}, address = {Maracaibo}, issn = {0254-0770}, pages = {119 -- 128}, year = {2011}, abstract = {This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile.}, language = {es} } @unpublished{deAraujoBatallaVillanuevaBronstert2014, author = {de Araujo, Jose Carlos and Batalla Villanueva, Ramon J. and Bronstert, Axel}, title = {Special issue: analysis and modelling of sediment transfer in Mediterranean river basins}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-1000-7}, pages = {1905 -- 1908}, year = {2014}, language = {en} } @article{MedeirosdeAraujoMamedeetal.2014, author = {Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Mamede, George Leite and Creutzfeldt, Benjamin and Guentner, Andreas and Bronstert, Axel}, title = {Connectivity of sediment transport in a semiarid environment: a synthesis for the Upper Jaguaribe Basin, Brazil}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0988-z}, pages = {1938 -- 1948}, year = {2014}, abstract = {Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (10(0)-10(4) km(2)). Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed. Rainfall erosivity in the study area was moderate (4600 MJ mm ha(-1) h(-1) year(-1)), whereas runoff depths (16-60 mm year(-1)), and therefore the sediment transport capacity, were low. Consequently, similar to 60 \% of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km(2) per reservoir) also limits sediment propagation, retaining up to 47 \% of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 \% of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km(2) basin, the SDR was reduced to 1 \% downstream of a large reservoir (1940-hm(3) capacity). Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.}, language = {en} } @article{BrosinskyFoersterSegletal.2014, author = {Brosinsky, Arlena and F{\"o}rster, Saskia and Segl, Karl and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Pique, Gemma and Bronstert, Axel}, title = {Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0927-z}, pages = {1965 -- 1981}, year = {2014}, abstract = {Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as "fingerprints" to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (> 60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events. Sediment samples from the following three different origins were collected in the Isabena catchment (445 km(2)) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions. We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location-and thus the effect of individual tributaries or subcatchments-seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (< 10 \%), and other sources (not further determinable) contributed up to 40 \%. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed. Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.}, language = {en} } @article{vanSchaikBronstertdeJongetal.2014, author = {van Schaik, N. Loes M. B. and Bronstert, Axel and de Jong, S. M. and Jetten, V. G. and van Dam, J. C. and Ritsema, C. J. and Schnabel, Susanne}, title = {Process-based modelling of a headwater catchment in a semi-arid area: the influence of macropore flow}, series = {Hydrological processes}, volume = {28}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.10086}, pages = {5805 -- 5816}, year = {2014}, abstract = {Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological models neglect this important subsurface preferential flow. Here, we use the process-oriented hydrological model Hillflow-3D, which includes a macropore flow approach, to simulate rainfall-runoff in the semi-arid Parapunos catchment in Spain, where macropore flow was observed in previous research. The model was extended for this study to account for sorptivity under very dry soil conditions. The results of the model simulations with and without macropore flow are compared. Both model versions give reasonable results for average rainfall situations, although the approach with the macropore concept provides slightly better results. The model results for scenarios of extreme rainfall events (>13.3mm30min(-1)) however show large differences between the versions with and without macropores. These model results compared with measured rainfall-runoff data show that the model with the macropore concept is better. Our conclusion is that preferential flow is important in controlling surface runoff in case of specific, high intensity rainfall events. Therefore, preferential flow processes must be included in hydrological models where we know that preferential flow occurs. Hydrological process models with a less detailed process description may fit observed average events reasonably well but can result in erroneous predictions for more extreme events. Copyright (c) 2013 John Wiley \& Sons, Ltd.}, language = {en} } @article{CostaBronstertdeAraujo2012, author = {Costa, A. C. and Bronstert, Axel and de Araujo, Jose Carlos}, title = {A channel transmission losses model for different dryland rivers}, series = {Hydrology and earth system sciences : HESS}, volume = {16}, journal = {Hydrology and earth system sciences : HESS}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-16-1111-2012}, pages = {1111 -- 1135}, year = {2012}, abstract = {Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceara, Brazil, which drains a catchment area of 20 000 km(2). Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the streamflow volume and peak for both case studies without using any parameter calibration procedure. We have shown that the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict streamflow volume and channel transmission losses, the former process being more relevant than the latter. Regarding model uncertainty, it was shown that the approaches, which were applied for the unsaturated zone processes (highly nonlinear with elaborate numerical solutions), are much more sensitive to parameter variability than those approaches which were used for the saturated zone (mathematically simple water budgeting in aquifer columns, including backwater effects). In case of the MJR-application, we have seen that structural uncertainties due to the limited knowledge of the subsurface saturated system interactions (i.e. groundwater coupling with channel water; possible groundwater flow parallel to the river) were more relevant than those related to the subsurface parameter variability. In case of the WEGW application we have seen that the non-linearity involved in the unsaturated flow processes in disconnected dryland river systems (controlled by the unsaturated zone) generally contain far more model uncertainties than do connected systems controlled by the saturated flow. Therefore, the degree of aridity of a dryland river may be an indicator of potential model uncertainty and subsequent attainable predictability of the system.}, language = {en} } @article{ConradtWechsungBronstert2013, author = {Conradt, Tobias and Wechsung, F. and Bronstert, Axel}, title = {Three perceptions of the evapotranspiration landscape comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances}, series = {Hydrology and earth system sciences : HESS}, volume = {17}, journal = {Hydrology and earth system sciences : HESS}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-17-2947-2013}, pages = {2947 -- 2966}, year = {2013}, abstract = {A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.}, language = {en} } @article{HeistermannCrisologoAbonetal.2013, author = {Heistermann, Maik and Crisologo, Irene and Abon, Catherine Cristobal and Racoma, B. A. and Jacobi, S. and Servando, N. T. and David, C. P. C. and Bronstert, Axel}, title = {Using the new Philippine radar network to reconstruct the Habagat of August 2012 monsoon event around Metropolitan Manila}, series = {Natural hazards and earth system sciences}, volume = {13}, journal = {Natural hazards and earth system sciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-13-653-2013}, pages = {653 -- 657}, year = {2013}, abstract = {From 6 to 9 August 2012, intense rainfall hit the northern Philippines, causing massive floods in Metropolitan Manila and nearby regions. Local rain gauges recorded almost 1000mm within this period. However, the recently installed Philippine network of weather radars suggests that Metropolitan Manila might have escaped a potentially bigger flood just by a whisker, since the centre of mass of accumulated rainfall was located over Manila Bay. A shift of this centre by no more than 20 km could have resulted in a flood disaster far worse than what occurred during Typhoon Ketsana in September 2009.}, language = {en} } @article{KneisBuergerBronstert2012, author = {Kneis, David and Buerger, Gerd and Bronstert, Axel}, title = {Evaluation of medium-range runoff forecasts for a 50 km(2) watershed}, series = {Journal of hydrology}, volume = {414}, journal = {Journal of hydrology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2011.11.005}, pages = {341 -- 353}, year = {2012}, abstract = {We generated medium-range forecasts of runoff for a 50 km(2) headwater catchment upstream of a reservoir using numerical weather predictions (NWPs) of the past as input to an operational hydrological model. NWP data originating from different sources were tested. For a period of 8.5 years, we computed daily forecasts with a lead time of +120 h based on an empirically downscaled version of the ECMWF's ensemble prediction system. For the last 3.5 years of the test period, we also tried the deterministic COSMO-EU forecast disseminated by the German Weather Service for lead times of up to +72 h. Common measures of skill indicate superiority of the ensemble runoff forecast over single-value forecasts for longer lead times. However, regardless of which NWP data were being used, the probability of event detection (POD) was found to be generally lower than 50\%. In many cases, values in the range of 20-30\% were obtained. At the same time, the false alarms ratio (FAR) was often found to be considerably high. The observed uncertainties in the hydrological forecasts were shown to originate from both the insufficient quality of precipitation forecasts as well as deficiencies in hydrological modeling and quantitative precipitation estimation. With respect to the anticipatory control of reservoirs in the studied catchment, the value of the tested runoff forecasts appears to be limited. This is due to the unfavorably low POD/FAR ratio in conjunction with a high cost-loss ratio. However, our results indicate that, in many cases, major runoff events related to snow melt can be successfully predicted as early as 4-5 days in advance.}, language = {en} } @article{BuergerHeistermannBronstert2014, author = {B{\"u}rger, Gerd and Heistermann, Maik and Bronstert, Axel}, title = {Towards subdaily rainfall disaggregation via Clausius-Clapeyron}, series = {Journal of hydrometeorology}, volume = {15}, journal = {Journal of hydrometeorology}, number = {3}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {1525-755X}, doi = {10.1175/JHM-D-13-0161.1}, pages = {1303 -- 1311}, year = {2014}, abstract = {Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications.}, language = {en} } @article{MohrMontgomeryHuberetal.2012, author = {Mohr, Christian Heinrich and Montgomery, David R. and Huber, Anton and Bronstert, Axel and Iroume, Andres}, title = {Streamflow response in small upland catchments in the Chilean coastal range to the M-W 8.8 Maule earthquake on 27 February 2010}, series = {Journal of geophysical research : Earth surface}, volume = {117}, journal = {Journal of geophysical research : Earth surface}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2011JF002138}, pages = {16}, year = {2012}, abstract = {Hydrological response to earthquakes has long been observed, yet the mechanisms responsible still remain unclear and likely vary in space and time. This study explores the base flow response in small upland catchments of the Coastal Range of south-central Chile after the M-W 8.8 Maule earthquake of 27 February 2010. An initial decline in streamflow followed by an increase of up to 400\% of the discharge measured immediately before the earthquake occurred, and diurnal streamflow oscillations intensified after the earthquake. Neither response time, nor time to maximum streamflow discharge showed any relationship with catchment topography or size, suggesting non-uniform release of water across the catchments. The fast response, unaffected stream water temperatures and a simple diffusion model point to the sandy saprolite as the source of the excess water. Base flow recession analysis reveals no evidence for substantial enhancement of lateral hydraulic conductivity in the saprolite after the earthquake. Seismic energy density reached similar to 170 J/m(3) for the main shock and similar to 0.9 J/m(3) for the aftershock, exceeding the threshold for liquefaction by undrained consolidation only during the main shock. Although increased hydraulic gradient due to ground acceleration-triggered, undrained consolidation is consistent with empirical magnitude-distance relationships for liquefaction, the lack of independent evidence for liquefaction means that enhanced vertical permeability (probably in combination with co-seismic near-surface dilatancy) cannot be excluded as a potential mechanism. Undrained consolidation may have released additional water from the saturated saprolite into the overlying soil, temporarily reducing water transfer to the creeks but enlarging the cross-section of the saturated zone, which in turn enhanced streamflow after establishment of a new hydraulic equilibrium. The enlarged saturated zone facilitated water uptake by roots and intensified evapotranspiration.}, language = {en} } @article{CostaBronstertKneis2012, author = {Costa, Alexandre Cunha and Bronstert, Axel and Kneis, David}, title = {Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {57}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2011.637043}, pages = {10 -- 25}, year = {2012}, abstract = {Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95\% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m(3)/s of range and relative errors (\%) in the range [-30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.}, language = {en} } @article{MohrMangaWangetal.2015, author = {Mohr, Christian Heinrich and Manga, Michael and Wang, Chi-yuen and Kirchner, James W. and Bronstert, Axel}, title = {Shaking water out of soil}, series = {Geology}, volume = {43}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G36261.1}, pages = {207 -- 210}, year = {2015}, abstract = {Moderate to large earthquakes can increase the amount of water flowing in streams. Previous interpretations and models assume that the extra water originates in the saturated zone. Here we show that earthquakes may also release water from the unsaturated zone when the seismic energy is sufficient to overcome the threshold of soil water retention. Soil water may then be released into aquifers, increasing streamflow. After the M8.8 Maule, Chile, earthquake, the discharge in some headwater catchments of the Chilean coastal range increased, and the amount of extra water in the discharge was similar to the total amount of water available for release from the unsaturated zone. Assuming rapid recharge of this water to the water table, a groundwater flow model that accounts for evapotranspiration and water released from soils can reproduce the increase in discharge as well as the enhanced diurnal discharge variations observed after the earthquake. Thus the unsaturated zone may play a previously unappreciated, and potentially significant, role in shallow hydrological responses to earthquakes.}, language = {en} } @article{deAraujoBronstert2016, author = {de Araujo, Jose Carlos and Bronstert, Axel}, title = {A method to assess hydrological drought in semi-arid environments and its application to the Jaguaribe River basin, Brazil}, series = {Water International}, volume = {41}, journal = {Water International}, publisher = {Wiley-Blackwell}, address = {Abingdon}, issn = {0250-8060}, doi = {10.1080/02508060.2015.1113077}, pages = {213 -- 230}, year = {2016}, abstract = {This manuscript proposes a method to assess hydrological drought in semi-arid environments under high impoundment rate and applies it to the semi-arid Jaguaribe River basin in Brazil. It analyzes droughts (1) in the largest reservoir systems; (2) in the Upper Basin, considering 4744 reservoirs, 800 wells and almost 18,000 cisterns; and (3) in reservoirs of different sizes during multiyear droughts. Results show that the water demand is constrained in the basin; hydrological and meteorological droughts are often out of phase; there is a negative correlation between storage level and drought severity; and the small systems cannot cope with long-term droughts.}, language = {en} } @article{MiegelGraeffSelleetal.2016, author = {Miegel, Konrad and Graeff, Thomas and Selle, Benny and Salzmann, Thomas and Franck, Christian and Bronstert, Axel}, title = {Investigation of a renatured fen on the Baltic Sea coast of Mecklenburg - Part I: System description and basic hydrological characterisation}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {60}, journal = {Hydrologie und Wasserbewirtschaftung}, publisher = {Bundesanst. f{\~A}¼r Gew{\~A}\isserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2016.4_1}, pages = {242 -- 258}, year = {2016}, language = {de} } @misc{KneisAbonBronstertetal.2016, author = {Kneis, David and Abon, Catherine Cristobal and Bronstert, Axel and Heistermann, Maik}, title = {Verification of short-term runoff forecasts for a small Philippine basin (Marikina)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {62}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0262-6667}, doi = {10.1080/02626667.2016.1183773}, pages = {205 -- 216}, year = {2016}, abstract = {Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties.}, language = {en} } @article{AbonKneisCrisologoetal.2016, author = {Abon, Catherine Cristobal and Kneis, David and Crisologo, Irene and Bronstert, Axel and David, Carlos Primo Constantino and Heistermann, Maik}, title = {Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines}, series = {GEOMATICS NATURAL HAZARDS \& RISK}, volume = {7}, journal = {GEOMATICS NATURAL HAZARDS \& RISK}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2015.1058862}, pages = {1390 -- 1405}, year = {2016}, abstract = {This case study evaluates the suitability of radar-based quantitative precipitation estimates (QPEs) for the simulation of streamflow in the Marikina River Basin (MRB), the Philippines. Hourly radar-based QPEs were produced from reflectivity that had been observed by an S-band radar located about 90 km from the MRB. Radar data processing and precipitation estimation were carried out using the open source library wradlib. To assess the added value of the radar-based QPE, we used spatially interpolated rain gauge observations (gauge-only (GO) product) as a benchmark. Rain gauge observations were also used to quantify rainfall estimation errors at the point scale. At the point scale, the radar-based QPE outperformed the GO product in 2012, while for 2013, the performance was similar. For both periods, estimation errors substantially increased from daily to the hourly accumulation intervals. Despite this fact, both rainfall estimation methods allowed for a good representation of observed streamflow when used to force a hydrological simulation model of the MRB. Furthermore, the results of the hydrological simulation were consistent with rainfall verification at the point scale: the radar-based QPE performed better than the GO product in 2012, and equivalently in 2013. Altogether, we could demonstrate that, in terms of streamflow simulation, the radar-based QPE can perform as good as or even better than the GO product - even for a basin such as the MRB which has a comparatively dense rain gauge network. This suggests good prospects for using radar-based QPE to simulate and forecast streamflow in other parts of the Philippines where rain gauge networks are not as dense.}, language = {en} } @article{HattermannKrysanovaHabecketal.2006, author = {Hattermann, Fred Fokko and Krysanova, Valentina and Habeck, Anja and Bronstert, Axel}, title = {Integrating wetlands and riparian zones in river basin modelling}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {199}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2005.06.012}, pages = {379 -- 392}, year = {2006}, abstract = {Wetlands, and in particular riparian wetlands, represent an interface between the catchment area and the aquatic environment. They control the exchange of water and related chemical fluxes from the upper catchment area to surface waters like streams and lakes. Their influence on water and nutrient balances has been investigated mainly at the patch scale. In this study an attempt was made (a) to integrate riparian zones and wetlands into eco-hydrological river basin modelling, and (b) to quantify the impacts of riparian wetland processes on water and nutrient fluxes in a meso-scale catchment located in the northeastern German lowland. The investigation was performed by analysing hydro-chemical field data and applying the eco-hydrological model SWIM (Soil and Water Integrated Model), which was extended to reproduce the relevant water and nutrient flows and retention processes at the catchment scale in general, and in riparian zones and wetlands in particular. The main extensions introduced in the model were: (1) implementation of daily groundwater table dynamics at the hydrotope level, (2) implementation of water and nutrient uptake by plants from groundwater in riparian zones and wetlands, and (3) assessment of nutrient retention in groundwater and interflow. The simulation results indicate that wetlands, though they represent relatively small parts of the total catchment area, may have a significant impact on the overall water and nutrient balances of the catchment. The uncertainty of the simulation results is considerably high, with the main sources of uncertainty being the model parameters representing the geo-hydrology and the input data for land use management. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, series = {Water}, volume = {9}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w9030204}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @misc{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394956}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @article{NiehoffBronstert2002, author = {Niehoff, Daniel and Bronstert, Axel}, title = {Landnutzung und Hochwasserentstehung : Modellierung anhand dreier mesoskaliger Einzugsgebiete}, year = {2002}, language = {de} } @article{BronstertMenzel2002, author = {Bronstert, Axel and Menzel, Lucas}, title = {Advances in Flood Research}, year = {2002}, language = {en} } @article{Bronstert2001, author = {Bronstert, Axel}, title = {The role of infiltration conditions for storm runoff generation at the hillslope and small catchment scale}, year = {2001}, language = {en} } @article{KatzenmaierFritschBronstert2001, author = {Katzenmaier, Daniel and Fritsch, Uta and Bronstert, Axel}, title = {Quantifizierung des Einflusses von Landnutzung und dezentraler Versickerung auf die Hochwasserentstehung}, isbn = {3-503-06021-9}, year = {2001}, language = {de} } @article{BronstertMenzelMiddelkoopetal.2001, author = {Bronstert, Axel and Menzel, Lucas and Middelkoop, H. and de Roo, A. P. and Van Beek, E.}, title = {River basin research and management : integrated modelling and investigation of land-use impacts on the hydrological cycle}, year = {2001}, language = {en} } @article{BronstertFritschLeonhardtetal.2001, author = {Bronstert, Axel and Fritsch, Uta and Leonhardt, H. and Niehoff, Daniel}, title = {Quantifizierung des Einflusses von Landnutzungs- und Klima{\"a}nderungen auf die Hochwasserentstehung am Beispiel ausgew{\"a}hlter Flussgebiete}, year = {2001}, language = {de} } @article{GuentnerBronstert2001, author = {G{\"u}ntner, Andreas and Bronstert, Axel}, title = {Modelling the effects of climate change on water availability in the semi-arid of North-East Brazil}, year = {2001}, language = {en} } @article{KrolJaegerBronstertetal.2001, author = {Krol, Marten S. and Jaeger, Annekathrin and Bronstert, Axel and Krywkow, J.}, title = {The Semi-arid Integrated Model (SIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil}, year = {2001}, language = {en} } @article{NiehoffBronstert2001, author = {Niehoff, Daniel and Bronstert, Axel}, title = {Influences of land-use and land-surface conditions on flood generation : a simulation study}, year = {2001}, language = {en} } @article{GuentnerBronstert2001, author = {G{\"u}ntner, Andreas and Bronstert, Axel}, title = {WAVES - Water availability, vulnerability of ecosystems and society in the northeast of Brazil : sub-project large-scale hydrological modelling}, year = {2001}, language = {en} } @book{KundzewiczBudhakooncharoenBronstertetal.2001, author = {Kundzewicz, Zbigniew W. and Budhakooncharoen, Saisunee and Bronstert, Axel and Hoff, Holger and Lettenmaier, Dennis P. and Menzel, Lucas and Schulze, Roland}, title = {Floods and droughts : coping with variability and climate change ; thematic backround paper [for the International Conference on Freshwater 2001, Bonn, 3-7 December 2001]}, publisher = {Secretariat of the International Conference on Freshwater}, address = {Bonn}, pages = {29 S.}, year = {2001}, language = {en} } @article{KundzewiczBudhakooncharoenBronstertetal.2001, author = {Kundzewicz, Zbigniew W. and Budhakooncharoen, Saisunee and Bronstert, Axel and Hoff, Holger and Lettenmaier, Dennis P. and Menzel, Lucas and Schulze, Roland}, title = {Coping with variability and climate change : floods and droughts}, year = {2001}, language = {en} } @article{BronstertFritschKatzenmaieretal.2000, author = {Bronstert, Axel and Fritsch, Uta and Katzenmaier, Daniel and Bismuth, Christine}, title = {Quantification of the influence of the land-surface and river training on flood discharge of the Rhine Basin}, year = {2000}, language = {en} } @article{BronstertKrolJaeger2000, author = {Bronstert, Axel and Krol, Marten S. and Jaeger, Annekathrin}, title = {WAVES : water availability, vulnerability of ecosystems and society in northeast brazil ; an overview of the interdisciplinary project and integrated modelling}, year = {2000}, language = {en} } @article{BronstertKatzenmaierFritsch2000, author = {Bronstert, Axel and Katzenmaier, Daniel and Fritsch, Uta}, title = {Hochwasserproblematik und der Zusammenhang mit Landnutzungs- und Klima{\"a}nderungen}, year = {2000}, language = {de} } @article{FritschKatzenmaierBronstert2000, author = {Fritsch, Uta and Katzenmaier, Daniel and Bronstert, Axel}, title = {Land-use and land-cover scenarios for flood risk analysis and river basin management}, year = {2000}, language = {en} } @article{BronstertKoehler2000, author = {Bronstert, Axel and K{\"o}hler, Birgit}, title = {Simulation der Einfl{\"u}sse anthropogener Klima{\"a}nderungen auf die Hochwasserentstehung : eine Fallstudie in einem kleinen l{\"a}ndlichen Einzugsgebiet im Ostharz}, year = {2000}, language = {de} } @article{KatzenmaierFritschBronstert2000, author = {Katzenmaier, Daniel and Fritsch, Uta and Bronstert, Axel}, title = {Influences of land-use and land-cover changes on storm-runoff generation}, year = {2000}, language = {en} } @article{Bronstert2000, author = {Bronstert, Axel}, title = {The possible impacts of environmental changes on flood formation : relevant processes and model requirements}, year = {2000}, language = {en} } @article{MenzelBronstertBuergeretal.2000, author = {Menzel, Lucas and Bronstert, Axel and B{\"u}rger, Gerd and Krysanova, Valentina}, title = {Environmental change scenarios and flood responses in the Elbe catchment (Germany)}, year = {2000}, language = {en} } @article{BronstertKundzewiczMenzel2000, author = {Bronstert, Axel and Kundzewicz, Zbigniew W. and Menzel, Lucas}, title = {Achievements and future needs towards improved flood protection in the Oder river basin : results of the EU- expert meeting on the Oder flood in Summer '97}, isbn = {0-7923-6451-1, 0-7923-6452-X}, year = {2000}, language = {en} } @article{BronstertLahmer2000, author = {Bronstert, Axel and Lahmer, Werner}, title = {Bewirtschaftungsm{\"o}glichkeiten im Einzugsgebiet der Havel}, year = {2000}, language = {de} } @article{BronstertGuentner2000, author = {Bronstert, Axel and G{\"u}ntner, Andreas}, title = {A large-scale hydrological model for the semi-arid environment of north-eastern Brazil}, year = {2000}, language = {en} } @article{BardossyBronstertBuiteveldetal.2000, author = {B{\´a}rdossy, Andras and Bronstert, Axel and Buiteveld, Hendrik and Disse, Markus and Fritsch, Uta and Katzenmaier, Daniel and Lammersen, Rita}, title = {Influence of the land surface and river training on flood conditions in the Rhine basin}, year = {2000}, language = {en} } @article{NiehoffBronstert2000, author = {Niehoff, Daniel and Bronstert, Axel}, title = {Influences of land-use and land-surface conditions on flood generation : a simulation study}, year = {2000}, language = {en} } @article{BronstertKrolJaegeretal.2000, author = {Bronstert, Axel and Krol, Marten S. and Jaeger, Annekathrin and G{\"u}ntner, Andreas and Hauschild, M. and D{\"o}ll, P.}, title = {Integrated modelling of water availability an management in the semi-arid Notheast of Brazil}, year = {2000}, language = {en} } @article{Bronstert, author = {Bronstert, Axel}, title = {Abflussbildung in der Landschaft}, series = {Hydrologie}, journal = {Hydrologie}, publisher = {Haupt Verlag}, address = {Bern}, isbn = {978-3-8252-4513-9}, pages = {143 -- 166}, language = {de} }