@article{MuellerSchroederEsselbachMueller2009, author = {M{\"u}ller, Daniel and Schr{\"o}der-Esselbach, Boris and M{\"u}ller, J{\"o}rg}, title = {Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest}, issn = {0021-8375}, doi = {10.1007/s10336-009-0390-6}, year = {2009}, abstract = {The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the 'wilding' concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species-habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87\%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy.}, language = {en} } @article{RudnerSchroederEsselbachBiedermannetal.2003, author = {Rudner, Michael and Schr{\"o}der-Esselbach, Boris and Biedermann, Robert and M{\"u}ller, Mark}, title = {Habitat modelling in GIMOLUS - webGIS-based e-learning modules using logistic regression to assess species- habitat relationships}, year = {2003}, language = {en} } @article{MuellerPoellathMoshammeretal.2009, author = {M{\"u}ller, J{\"o}rg and Poellath, Jakob and Moshammer, Ralf and Schr{\"o}der-Esselbach, Boris}, title = {Predicting the occurrence of Middle Spotted Woodpecker Dendrocopos medius on a regional scale, using forest inventory data}, issn = {0378-1127}, doi = {10.1016/j.foreco.2008.09.023}, year = {2009}, abstract = {The Middle Spotted Woodpecker (Dendrocopos medius) is the bird species which Germany has the greatest global responsibility to protect. It is an umbrella species for the entire assemblage of animals associated with mature broadleaved trees, especially oak. Even though well studied in small to medium scale stands, the validity of habitat suitability analysis for this species in larger forests has not previously been proved. Aim of this study was to test suitability of permanent forest inventory plots for modelling its distribution in a 17,000 ha forest landscape and to derive habitat threshold values as a basis for formulating management guidelines. Based on 150 randomly selected 12.5 ha plots we identified mean age and basal area of oaks as the most important habitat factors using a backward selection logistic model. Internal validation showed an AUC of 0.89 and a R-2(N) of 0.58. Determination of thresholds using maximally selected rank statistics found higher probability of occurrence in stands with a mean age >95 years. Above that age the probability increased again in stands with more than 6.4 m(2) basal area oak/ha. Our results show that widely available forest inventory data can serve as a valuable basis for monitoring the Middle Spotted Woodpecker, either within the framework of the Natura 2000 Network, or more generally in integrated forest management with the aim of providing suitable habitats for the entire assemblage of species on old deciduous trees, especially oak.}, language = {en} } @article{HothornMuellerSchroederetal.2011, author = {Hothorn, Torsten and M{\"u}ller, J{\"o}rg and Schroeder, Boris and Kneib, Thomas and Brandl, Roland}, title = {Decomposing environmental, spatial, and spatiotemporal components of species distributions}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {81}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, number = {2}, publisher = {Wiley}, address = {Washington}, issn = {0012-9615}, doi = {10.1890/10-0602.1}, pages = {329 -- 347}, year = {2011}, abstract = {Species distribution models are an important tool to predict the impact of global change on species distributional ranges and community assemblages. Although considerable progress has been made in the statistical modeling during the last decade, many approaches still ignore important features of species distributions, such as nonlinearity and interactions between predictors, spatial autocorrelation, and nonstationarity, or at most incorporate only some of these features. Ecologists, however, require a modeling framework that simultaneously addresses all these features flexibly and consistently. Here we describe such an approach that allows the estimation of the global effects of environmental variables in addition to local components dealing with spatiotemporal autocorrelation as well as nonstationary effects. The local components can be used to infer unknown spatiotemporal processes; the global component describes how the species is influenced by the environment and can be used for predictions, allowing the fitting of many well-known regression relationships, ranging from simple linear models to complex decision trees or from additive models to models inspired by machine learning procedures. The reliability of spatiotemporal predictions can be qualitatively predicted by separately evaluating the importance of local and global effects. We demonstrate the potential of the new approach by modeling the breeding distribution of the Red Kite (Milvus milvus), a bird of prey occurring predominantly in Western Europe, based on presence/absence data from two mapping campaigns using grids of 40 km 2 in Bavaria. The global component of the model selected seven environmental variables extracted from the CORINE and WorldClim databases to predict Red Kite breeding. The effect of altitude was found to be nonstationary in space, and in addition, the data were spatially autocorrelated, which suggests that a species distribution model that does not allow for spatially varying effects and spatial autocorrelation would have ignored important processes determining the distribution of Red Kite breeding across Bavaria. Thus, predictions from standard species distribution models that do not allow for real-world complexities may be considerably erroneous. Our analysis of Red Kite breeding exemplifies the potential of the innovative approach for species distribution models. The method is also applicable to modeling count data.}, language = {en} } @article{HunkeMuellerSchroederEsselbachetal.2015, author = {Hunke, Philip and M{\"u}ller, Eva Nora and Schr{\"o}der-Esselbach, Boris and Zeilhofer, Peter}, title = {The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use}, series = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, volume = {8}, journal = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1936-0584}, doi = {10.1002/eco.1573}, pages = {1154 -- 1180}, year = {2015}, abstract = {The Brazilian Cerrado is recognized as one of the most threatened biomes in the world, as the region has experienced a striking change from natural Cerrado vegetation to intense cash crop production. This paper reviews the history of land conversion in the Cerrado and the development of soil properties and water resources under past and ongoing land use. We compared soil and water quality parameters from different land uses considering 80 soil and 18 water studies conducted in different regions across the Cerrado to provide quantitative evidence of soil and water alterations from land use change. Following the conversion of native Cerrado, significant effects on soil pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the sites classified as croplands were nitrogen-fixing soybeans, which are not artificially fertilized with N. In contrast, water quality studies showed nitrogen enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and European Union (EU) water quality limits, which were potentially accompanied by serious health implications. Land use intensification is likely to continue, particularly in regions where less annual rainfall and severe droughts are projected in the northeastern and western Cerrado. Thus, the leaching risk and displacement of agrochemicals are expected to increase, particularly because the current legislation has caused a reduction in riparian vegetation. We conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This study may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado. Copyright (C) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{MuellervanSchaikBlumeetal.2014, author = {M{\"u}ller, Eva Nora and van Schaik, Loes and Blume, Theresa and Bronstert, Axel and Carus, Jana and Fleckenstein, Jan H. and Fohrer, Nicola and Geissler, Katja and Gerke, Horst H. and Gr{\"a}ff, Thomas and Hesse, Cornelia and Hildebrandt, Anke and H{\"o}lker, Franz and Hunke, Philip and K{\"o}rner, Katrin and Lewandowski, J{\"o}rg and Lohmann, Dirk and Meinikmann, Karin and Schibalski, Anett and Schmalz, Britta and Schr{\"o}der-Esselbach, Boris and Tietjen, Britta}, title = {Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {58}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2014,4_2}, pages = {221 -- 240}, year = {2014}, abstract = {Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change.}, language = {de} } @misc{JeltschBontePe'eretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Pe'er, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401177}, pages = {13}, year = {2013}, abstract = {Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.}, language = {en} } @article{JeltschBontePeeretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Peer, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics}, doi = {10.1186/2051-3933-1-6}, year = {2013}, language = {en} } @article{AuerKrieglerCarlsenetal.2021, author = {Auer, Cornelia and Kriegler, Elmar and Carlsen, Henrik and Kok, Kasper and Pedde, Simona and Krey, Volker and M{\"u}ller, Boris}, title = {Climate change scenario services}, series = {One earth}, volume = {4}, journal = {One earth}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2590-3322}, doi = {10.1016/j.oneear.2021.07.015}, pages = {1074 -- 1082}, year = {2021}, abstract = {The goal of limiting global warming to well below 2°C as set out in the Paris Agreement calls for a strategic assessment of societal pathways and policy strategies. Besides policy makers, new powerful actors from the private sector, including finance, have stepped up to engage in forward-looking assessments of a Paris-compliant and climate-resilient future. Climate change scenarios have addressed this demand by providing scientific insights on the possible pathways ahead to limit warming in line with the Paris climate goal. Despite the increased interest, the potential of climate change scenarios has not been fully unleashed, mostly due to a lack of an intermediary service that provides guidance and access to climate change scenarios. This perspective presents the concept of a climate change scenario service, its components, and a prototypical implementation to overcome this shortcoming aiming to make scenarios accessible to a broader audience of societal actors and decision makers.}, language = {en} }