@article{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Mitochondrial DNA Part B}, volume = {4}, journal = {Mitochondrial DNA Part B}, number = {1}, publisher = {Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2018.1547143}, pages = {498 -- 500}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @misc{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {532}, issn = {1866-8372}, doi = {10.25932/publishup-42322}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423222}, pages = {3}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @phdthesis{DeCahsan, author = {De Cahsan, Binia}, title = {Introgressive hybridization in northern range margin populations of the European fire-bellied toad (Bombina bombina)}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {108}, abstract = {The European fire-bellied toad (Bombina bombina) is regarded as one of the most threatened species of amphibians in central Europe and is particularly affected by environmental perturbations. During the last decades population numbers in Germany have declined drastically due to pollution, eutrophication and habitat fragmentation. Illegal translocations resulted in an introgression from southern genotypes (probably Austrian) into three local Bombina populations (Northern Germany and Southern Sweden) belonging to the northern lineage of the species. Interestingly, these populations show high frequencies of allochthonous (non-local) alleles at multiple loci and outperform the autochthonous populations in terms of their body condition. Over a time period of ten years, I could show that the Southern lineage haplo- and genotypes are still present in the North and that frequencies of introgressed haplotypes in allochthonous populations did not increase over time. However, the introgression itself expanded towards adjacent populations while the overall haplotype diversity has decreased. In contrast, southern lineage genotypes for two candidate genes under selection, the (immunity) MHC class II gene, as well as the (temperature) stress response HSP70 kDa gene, either do not occur at all or only at low frequencies in northern populations. Furthermore, these alleles do not seem to follow the introgression pattern, as they are also present in non-introgressed populations. This thesis tested two possible outcomes of introgressive hybridization in Northern B. bombina populations: (1) local populations (autochthonous) of Bombina bombina are highly adapted to their environments so that introgression of alien genes causes outbreeding depression or (2) local populations of Bombina bombina potentially lack adaptive variation so that introgression of alien genes causes genetic rescue and promotes adaptive change. I found that this unintentional experiment, as a result of illegal translocations imitating introgression of alien genes coming from a southern population (potentially adapted to warmer climate) into a northern lineage (potentially adapted to local pathogens), has increased the genetic diversity and improved fitness in introgressed northern populations, without disrupting local adaptation in the threatened amphibian species B. bombina, favouring the genetic rescue hypothesis. These results and conclusions represent relevant information for future conservation plans, including supportive breeding programmes for fire-bellied toads in Northern Germany and Southern Sweden.}, language = {en} }