@article{ThomasCarvalhoHaileetal.2019, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Rawlence, Nicolas J. and Martin, Michael D. and Ho, Simon Y. W. and Sigfusson, Arnor P. and Josefsson, Vigfus A. and Frederiksen, Morten and Linnebjerg, Jannie F. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Soares, Andre E. R. and Lacy, Robert and Barilaro, Christina and Best, Juila and Brandis, Dirk and Cavallo, Chiara and Elorza, Mikelo and Garrett, Kimball L. and Groot, Maaike and Johansson, Friederike and Lifjeld, Jan T. and Nilson, Goran and Serjeanston, Dale and Sweet, Paul and Fuller, Errol and Hufthammer, Anne Karin and Meldgaard, Morten and Fjeldsa, Jon and Shapiro, Beth and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {Demographic reconstruction from ancient DNA supports rapid extinction of the great auk}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.47509}, pages = {35}, year = {2019}, abstract = {The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.}, language = {en} } @article{FagesHanghojKhanetal.2019, author = {Fages, Antoine and Hanghoj, Kristian and Khan, Naveed and Gaunitz, Charleen and Seguin-Orlando, Andaine and Leonardi, Michela and Constantz, Christian McCrory and Gamba, Cristina and Al-Rasheid, Khaled A. S. and Albizuri, Silvia and Alfarhan, Ahmed H. and Allentoft, Morten and Alquraishi, Saleh and Anthony, David and Baimukhanov, Nurbol and Barrett, James H. and Bayarsaikhan, Jamsranjav and Benecke, Norbert and Bernaldez-Sanchez, Eloisa and Berrocal-Rangel, Luis and Biglari, Fereidoun and Boessenkool, Sanne and Boldgiv, Bazartseren and Brem, Gottfried and Brown, Dorcas and Burger, Joachim and Crubezy, Eric and Daugnora, Linas and Davoudi, Hossein and Damgaard, Peter de Barros and de Chorro y de Villa-Ceballos, Maria de los Angeles and Deschler-Erb, Sabine and Detry, Cleia and Dill, Nadine and Oom, Maria do Mar and Dohr, Anna and Ellingvag, Sturla and Erdenebaatar, Diimaajav and Fathi, Homa and Felkel, Sabine and Fernandez-Rodriguez, Carlos and Garcia-Vinas, Esteban and Germonpre, Mietje and Granado, Jose D. and Hallsson, Jon H. and Hemmer, Helmut and Hofreiter, Michael and Kasparov, Aleksei and Khasanov, Mutalib and Khazaeli, Roya and Kosintsev, Pavel and Kristiansen, Kristian and Kubatbek, Tabaldiev and Kuderna, Lukas and Kuznetsov, Pavel and Laleh, Haeedeh and Leonard, Jennifer A. and Lhuillier, Johanna and von Lettow-Vorbeck, Corina Liesau and Logvin, Andrey and Lougas, Lembi and Ludwig, Arne and Luis, Cristina and Arruda, Ana Margarida and Marques-Bonet, Tomas and Silva, Raquel Matoso and Merz, Victor and Mijiddorj, Enkhbayar and Miller, Bryan K. and Monchalov, Oleg and Mohaseb, Fatemeh A. and Morales, Arturo and Nieto-Espinet, Ariadna and Nistelberger, Heidi and Onar, Vedat and Palsdottir, Albina H. and Pitulko, Vladimir and Pitskhelauri, Konstantin and Pruvost, Melanie and Sikanjic, Petra Rajic and Papesa, Anita Rapan and Roslyakova, Natalia and Sardari, Alireza and Sauer, Eberhard and Schafberg, Renate and Scheu, Amelie and Schibler, Jorg and Schlumbaum, Angela and Serrand, Nathalie and Serres-Armero, Aitor and Shapiro, Beth and Seno, Shiva Sheikhi and Shevnina, Irina and Shidrang, Sonia and Southon, John and Star, Bastiaan and Sykes, Naomi and Taheri, Kamal and Taylor, William and Teegen, Wolf-Rudiger and Vukicevic, Tajana Trbojevic and Trixl, Simon and Tumen, Dashzeveg and Undrakhbold, Sainbileg and Usmanova, Emma and Vahdati, Ali and Valenzuela-Lamas, Silvia and Viegas, Catarina and Wallner, Barbara and Weinstock, Jaco and Zaibert, Victor and Clavel, Benoit and Lepetz, Sebastien and Mashkour, Marjan and Helgason, Agnar and Stefansson, Kari and Barrey, Eric and Willerslev, Eske and Outram, Alan K. and Librado, Pablo and Orlando, Ludovic}, title = {Tracking five millennia of horse management with extensive ancient genome time series}, series = {Cell}, volume = {177}, journal = {Cell}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0092-8674}, doi = {10.1016/j.cell.2019.03.049}, pages = {1419 -- 1435}, year = {2019}, abstract = {Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.}, language = {en} } @article{ChangKnappEnketal.2017, author = {Chang, Dan and Knapp, Michael and Enk, Jacob and Lippold, Sebastian and Kircher, Martin and Lister, Adrian M. and MacPhee, Ross D. E. and Widga, Christopher and Czechowski, Paul and Sommer, Robert and Hodges, Emily and St{\"u}mpel, Nikolaus and Barnes, Ian and Dal{\´e}n, Love and Derevianko, Anatoly and Germonpr{\´e}, Mietje and Hillebrand-Voiculescu, Alexandra and Constantin, Silviu and Kuznetsova, Tatyana and Mol, Dick and Rathgeber, Thomas and Rosendahl, Wilfried and Tikhonov, Alexey N. and Willerslev, Eske and Hannon, Greg and Lalueza i Fox, Carles and Joger, Ulrich and Poinar, Hendrik N. and Hofreiter, Michael and Shapiro, Beth}, title = {The evolutionary and phylogeographic history of woolly mammoths}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44585}, pages = {10}, year = {2017}, abstract = {Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.}, language = {en} } @misc{AlterMeyerPostetal.2015, author = {Alter, S. Elizabeth and Meyer, Matthias and Post, Klaas and Czechowski, Paul and Gravlund, Peter and Gaines, Cork and Rosenbaum, Howard C. and Kaschner, Kristin and Turvey, Samuel T. and van der Plicht, Johannes and Shapiro, Beth and Hofreiter, Michael}, title = {Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {965}, issn = {1866-8372}, doi = {10.25932/publishup-43892}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438920}, pages = {1510 -- 1522}, year = {2015}, abstract = {Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.}, language = {en} } @misc{MeyerPalkopoulouBalekaetal.2017, author = {Meyer, Matthias and Palkopoulou, Eleftheria and Baleka, Sina Isabelle and Stiller, Mathias and Penkman, Kirsty E. H. and Alt, Kurt W. and Ishida, Yasuko and Mania, Dietrich and Mallick, Swapan and Meijer, Tom and Meller, Harald and Nagel, Sarah and Nickel, Birgit and Ostritz, Sven and Rohland, Nadin and Schauer, Karol and Sch{\"u}ler, Tim and Roca, Alfred L. and Reich, David and Shapiro, Beth and Hofreiter, Michael}, title = {Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {790}, issn = {1866-8372}, doi = {10.25932/publishup-44013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440139}, pages = {14}, year = {2017}, abstract = {The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods similar to 120 and similar to 244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.}, language = {en} } @article{HornProstStilleretal.2014, author = {Horn, Susanne and Prost, Stefan and Stiller, Mathias and Makowiecki, Daniel and Kuznetsova, Tatiana and Benecke, Norbert and Pucher, Erich and Hufthammer, Anne K. and Schouwenburg, Charles and Shapiro, Beth and Hofreiter, Michael}, title = {Ancient mitochondrial DNA and the genetic history of Eurasian beaver (Castor fiber) in Europe}, series = {Molecular ecology}, volume = {23}, journal = {Molecular ecology}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.12691}, pages = {1717 -- 1729}, year = {2014}, abstract = {After centuries of human hunting, the Eurasian beaver Castor fiber had disappeared from most of its original range by the end of the 19th century. The surviving relict populations are characterized by both low genetic diversity and strong phylogeographical structure. However, it remains unclear whether these attributes are the result of a human-induced, late Holocene bottleneck or already existed prior to this reduction in range. To investigate genetic diversity in Eurasian beaver populations during the Holocene, we obtained mitochondrial control region DNA sequences from 48 ancient beaver samples and added 152 modern sequences from GenBank. Phylogeographical analyses of the data indicate a differentiation of European beaver populations into three mitochondrial clades. The two main clades occur in western and eastern Europe, respectively, with an early Holocene contact zone in eastern Europe near a present-day contact zone. A divergent and previously unknown clade of beavers from the Danube Basin survived until at least 6000years ago, but went extinct during the transition to modern times. Finally, we identify a recent decline in effective population size of Eurasian beavers, with a stronger bottleneck signal in the western than in the eastern clade. Our results suggest that the low genetic diversity and the strong phylogeographical structure in recent beavers are artefacts of human hunting-associated population reductions. While beaver populations have been growing rapidly since the late 19th century, genetic diversity within modern beaver populations remains considerably reduced compared to what was present prior to the period of human hunting and habitat reduction.}, language = {en} } @article{SchubertJonssonChangetal.2014, author = {Schubert, Mikkel and Jonsson, Hakon and Chang, Dan and Sarkissian, Clio Der and Ermini, Luca and Ginolhac, Aurelien and Albrechtsen, Anders and Dupanloup, Isabelle and Foucal, Adrien and Petersen, Bent Larsen and Fumagalli, Matteo and Raghavan, Maanasa and Seguin-Orlando, Andaine and Korneliussen, Thorfinn S. and Velazquez, Amhed M. V. and Stenderup, Jesper and Hoover, Cindi A. and Rubin, Carl-Johan and Alfarhan, Ahmed H. and Alquraishi, Saleh A. and Al-Rasheid, Khaled A. S. and MacHugh, David E. and Kalbfleisch, Ted and MacLeod, James N. and Rubin, Edward M. and Sicheritz-Ponten, Thomas and Andersson, Leif and Hofreiter, Michael and Marques-Bonet, Tomas and Gilbert, M. Thomas P. and Nielsen, Rasmus and Excoffier, Laurent and Willerslev, Eske and Shapiro, Beth and Orlando, Ludovic}, title = {Prehistoric genomes reveal the genetic foundation and cost of horse domestication}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {52}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1416991111}, pages = {E5661 -- E5669}, year = {2014}, language = {en} } @article{AlterMeyerPostetal.2015, author = {Alter, S. Elizabeth and Meyer, Matthias and Post, Klaas and Czechowski, Paul and Gravlund, Peter and Gaines, Cork and Rosenbaum, Howard C. and Kaschner, Kristin and Turvey, Samuel T. and van der Plicht, Johannes and Shapiro, Beth and Hofreiter, Michael}, title = {Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100}, series = {Molecular ecology}, volume = {24}, journal = {Molecular ecology}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13121}, pages = {1510 -- 1522}, year = {2015}, abstract = {Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.}, language = {en} } @article{MeyerPalkopoulouBalekaetal.2017, author = {Meyer, Matthias and Palkopoulou, Eleftheria and Baleka, Sina Isabelle and Stiller, Mathias and Penkman, Kirsty E. H. and Alt, Kurt W. and Ishida, Yasuko and Mania, Dietrich and Mallick, Swapan and Meijer, Tom and Meller, Harald and Nagel, Sarah and Nickel, Birgit and Ostritz, Sven and Rohland, Nadin and Schauer, Karol and Schueler, Tim and Roca, Alfred L. and Reich, David and Shapiro, Beth and Hofreiter, Michael}, title = {Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution}, series = {eLife}, volume = {6}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.25413}, pages = {14}, year = {2017}, abstract = {The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods similar to 120 and similar to 244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.}, language = {en} } @article{BarlowCahillHartmannetal.2018, author = {Barlow, Axel and Cahill, James A. and Hartmann, Stefanie and Theunert, Christoph and Xenikoudakis, Georgios and Gonzalez-Fortes, Gloria M. and Paijmans, Johanna L. A. and Rabeder, Gernot and Frischauf, Christine and Garcia-Vazquez, Ana and Murtskhvaladze, Marine and Saarma, Urmas and Anijalg, Peeter and Skrbinsek, Tomaz and Bertorelle, Giorgio and Gasparian, Boris and Bar-Oz, Guy and Pinhasi, Ron and Slatkin, Montgomery and Dalen, Love and Shapiro, Beth and Hofreiter, Michael}, title = {Partial genomic survival of cave bears in living brown bears}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0654-8}, pages = {1563 -- 1570}, year = {2018}, abstract = {Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4\% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species.}, language = {en} }