@article{WeberScholzSchroederRitzrauetal.2018, author = {Weber, Michael and Scholz, Denis and Schr{\"o}der-Ritzrau, Andrea and Deininger, Michael and Sp{\"o}tl, Christoph and Lugli, Federico and Mertz-Kraus, Regina and Jochum, Klaus Peter and Fohlmeister, Jens Bernd and Stumpf, Cintia F. and Riechelmann, Dana F. C.}, title = {Evidence of warm and humid interstadials in central Europe during early MISSUE 3 revealed by a multi-proxy speleothem record}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {200}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.09.045}, pages = {276 -- 286}, year = {2018}, abstract = {Marine Isotope Stage 3 (MIS 3, 57-27 ka) was characterised by numerous rapid climate oscillations (i.e., Dansgaard-Oeschger (D/O-) events), which are reflected in various climate archives. So far, MIS 3 speleothem records from central Europe have mainly been restricted to caves located beneath temperate Alpine glaciers or close to the Atlantic Ocean. Thus, MIS 3 seemed to be too cold and dry to enable speleothem growth north of the Alps in central Europe. Here we present a new speleothem record from Bunker Cave, Germany, which shows two distinct growth phases from 52.0 (+0.8, -0.5) to 50.9 (+0.6, -1.3) ka and 473 (+1.0, -0.6) to 42.8 (+/- 0.9) ka, rejecting this hypothesis. These two growth phases potentially correspond to the two warmest and most humid phases in central Europe during MIS 3, which is confirmed by pollen data from the nearby Eifel. The hiatus separating the two phases is associated with Heinrich stadial 5 (HS 5), although the growth stop precedes the onset of HS 5. The first growth phase is characterised by a fast growth rate, and Mg concentrations and Sr isotope data suggest high infiltration and the presence of soil cover above the cave. The second growth phase was characterised by drier, but still favourable conditions for speleothem growth. During this phase, the delta C-13 values show a significant decrease associated with D/O-event 12. The timing of this shift is in agreement with other MIS 3 speleothem data from Europe and Greenland ice core data. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PyšekPerglEssletal.2017, author = {Pyšek, Petr and Pergl, Jan and Essl, Franz and Lenzner, Bernd and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco Jos{\´e} and C{\´a}rdenas L{\´o}pez, Dairon and C{\´a}rdenas-Toro, Juliana and Castańo, Nicol{\´a}s and Chac{\´o}n, Eduardo and Chatelain, Cyrille and Dullinger, Stefan and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Genovesi, Piero and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Maurel, No{\"e}lie and Meerman, Jan and Morozova, Olʹga V. and Moser, Dietmar and Nickrent, Daniel and Nowak, Pauline M. and Pagad, Shyama and Patzelt, Annette and Pelser, Pieter B. and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Weber, Ewald and Wieringa, Jan J. and Baptiste, Maria P. and Kleunen, Mark van}, title = {Naturalized alien flora of the world}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {89}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {3}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, doi = {10.23855/preslia.2017.203}, pages = {203 -- 274}, year = {2017}, abstract = {Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35\% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48\% of the regions that cover 42\% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4\%) thanmainland regions (29.5\%), and fewer annual herbs (18.7\% compared to 22.3\%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.}, language = {en} } @article{SeebensEsslDawsonetal.2015, author = {Seebens, Hanno and Essl, Franz and Dawson, Wayne and Fuentes, Nicol and Moser, Dietmar and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Blasius, Bernd}, title = {Global trade will accelerate plant invasions in emerging economies under climate change}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13021}, pages = {4128 -- 4140}, year = {2015}, abstract = {Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'imperialist dogma,' stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub) tropical regions, yet not by enough to cancel out the trade-related increase.}, language = {en} } @article{EsslDawsonKreftetal.2019, author = {Essl, Franz and Dawson, Wayne and Kreft, Holger and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weigelt, Patrick and Mang, Thomas and Dullinger, Stefan and Lenzner, Bernd and Moser, Dietmar and Maurel, Noelie and Seebens, Hanno and Stein, Anke and Weber, Ewald and Chatelain, Cyrille and Inderjit, and Genovesi, Piero and Kartesz, John and Morozova, Olga and Nishino, Misako and Nowak, Pauline M. and Pagad, Shyama and Shu, Wen-sheng and Winter, Marten}, title = {Drivers of the relative richness of naturalized and invasive plant species on Earth}, series = {AoB PLANTS}, volume = {11}, journal = {AoB PLANTS}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2041-2851}, doi = {10.1093/aobpla/plz051}, pages = {13}, year = {2019}, abstract = {Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (similar to 50 \% of the explained variation) than RRN (similar to 40 \%). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have similar to 6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 \% of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.}, language = {en} } @article{BuggischHoehndorfPaechetal.1996, author = {Buggisch, W. and H{\"o}hndorf, A. and Paech, H.-J. and Kleinschmidt, G. and Kreuzer, H. and Weber, Bernd}, title = {Stephenson bastion formation (palaeontology)}, year = {1996}, language = {en} } @article{BuggischPaechWeber1996, author = {Buggisch, W. and Paech, H.-J. and Weber, Bernd}, title = {The watts needle formation (palaeontology)}, year = {1996}, language = {en} } @article{MartinWeber1994, author = {Martin, D. and Weber, Bernd}, title = {Oxime ether analogs of sex pheromone components of turnip moth (Agrotis segetum SCHIFFERM{\"U}LLER)}, year = {1994}, language = {en} } @article{ThomsonWeber1995, author = {Thomson, M. R. A. and Weber, Bernd}, title = {A new and unusual fauna from the Blaiklock Glacier Group, Shackleton Range}, year = {1995}, language = {en} } @article{Weber1995, author = {Weber, Bernd}, title = {Fossilfunde in der Shackleton Range}, year = {1995}, language = {de} } @article{Weber1995, author = {Weber, Bernd}, title = {Mikrofossilien und Biostratigraphie jungproterozoischer und altpal{\"a}ozoischer Sedimente der Shackleton Range}, year = {1995}, language = {de} } @article{KoulakovSobolevWeberetal.2006, author = {Koulakov, Ivan and Sobolev, Stephan Vladimir and Weber, Bernd and Oreshin, Sergey and Wylegalla, Kurt and Hofstetter, Rami}, title = {Teleseismic tomography reveals no signature of the Dead Sea Transform in the upper mantle structure}, series = {Earth and planetary science letters}, volume = {252}, journal = {Earth and planetary science letters}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2006.09.039}, pages = {189 -- 200}, year = {2006}, abstract = {We present results of a tomographic inversion of teleseismic data recorded at 48 stations of a temporary network which was installed in the area of the Dead Sea Transform (DST) and operated for 1 yr in the framework of the multidisciplinary DESERT Project. The 3366 teleseismic P and PKP phases from 135 events were hand picked and corrected for surface topography and crustal thickness. The inversion shows pronounced low-velocity anomalies in the crust, beneath the DST, which are consistent with recent results from local-source tomography. These anomalies are likely related to the young sediments and fractured rocks in the fault zone. The deeper the retrieved anomalies are quite weak. Most prominent is the high-velocity strip-like anomaly striking SE-NW. We attribute this anomaly to the inherited heterogeneity of lithospheric structure, with a possible contribution by the shallow Precambrian basement east of the DST and to lower crustal heterogeneity reported in this region by other seismic studies. We do not observe reliable signature of the DST in the upper mantle structure. Some weak indications of low-velocity anomalies in the upper mantle beneath the DST may well result from the down-smearing of the strong upper crustal anomalies. We also see very little topography of the lithosphere-asthenosphere boundary beneath the DST, which would generate significant horizontal velocity variations. These results are consistent with predictions from a recent thereto-mechanical model of the DST. Our tomographic model provides some indication of hot mantle flow from the deeper upper mantle rooted in the region of the Red Sea. However, resolution tests show that this anomaly may well be beyond resolution of the model. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @misc{RianoPachonNagelNeigenfindetal.2009, author = {Riano-Pachon, Diego Mauricio and Nagel, Axel and Neigenfind, Jost and Wagner, Robert and Basekow, Rico and Weber, Elke and M{\"u}ller-R{\"o}ber, Bernd and Diehl, Svenja and Kersten, Birgit}, title = {GabiPD : the GABI primary database - a plant integrative "omics" database}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45075}, year = {2009}, abstract = {The GABI Primary Database, GabiPD (http:// www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different 'omics' fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for textbased retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data.}, language = {en} } @article{DahmStillerMechieetal.2020, author = {Dahm, Torsten and Stiller, Manfred and Mechie, James and Heimann, Sebastian and Hensch, Martin and Woith, Heiko and Schmidt, Bernd and Gabriel, Gerald and Weber, Michael}, title = {Seismological and geophysical signatures of the deep crustal magma systems of the cenozoic volcanic fields Beneath the Eifel, Germany}, series = {Geochemistry, geophysics, geosystems}, volume = {21}, journal = {Geochemistry, geophysics, geosystems}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2020GC009062}, pages = {21}, year = {2020}, abstract = {The Quaternary volcanic fields of the Eifel (Rhineland-Palatinate, Germany) had their last eruptions less than 13,000 years ago. Recently, deep low-frequency (DLF) earthquakes were detected beneath one of the volcanic fields showing evidence of ongoing magmatic activity in the lower crust and upper mantle. In this work, seismic wide- and steep-angle experiments from 1978/1979 and 1987/1988 are compiled, partially reprocessed and interpreted, together with other data to better determine the location, size, shape, and state of magmatic reservoirs in the Eifel region near the crust-mantle boundary. We discuss seismic evidence for a low-velocity gradient layer from 30-36 km depth, which has developed over a large region under all Quaternary volcanic fields of the Rhenish Massif and can be explained by the presence of partial melts. We show that the DLF earthquakes connect the postulated upper mantle reservoir with the upper crust at a depth of about 8 km, directly below one of the youngest phonolitic volcanic centers in the Eifel, where CO(2)originating from the mantle is massively outgassing. A bright spot in the West Eifel between 6 and 10 km depth represents a Tertiary magma reservoir and is seen as a model for a differentiated reservoir beneath the young phonolitic center today. We find that the distribution of volcanic fields is controlled by the Variscan lithospheric structures and terrane boundaries as a whole, which is reflected by an offset of the Moho depth, a wedge-shaped transparent zone in the lower crust and the system of thrusts over about 120 km length.}, language = {en} }